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Abstract

Flexible, goal-directed behavior depends on the ability to update value representations in response
to changing contingencies. This ability depends on distributed brain networks, calling for use of
whole-brain imaging. Widely used in human research, the challenge of functional fMRI in rodents
has only recently been properly addressed, opening the door to whole-brain imaging of behaving
mice. Here, we used functional MRI in mice performing a go/no-go odor discrimination task, we
compared neural activity during initial cue-reward learning (acquisition) and subsequent
contingency reversal. Trial-by-trial estimates of state-action values from a model-free
reinforcement-learning algorithm allowed us to dissociate acquisition from reversal-related
signals, revealing that ventral striatal responses tracked expected value during acquisition, whereas
reversal learning additionally recruited the periaqueductal gray (PAG), a midbrain structure
classically linked to threat processing and aversive learning. PAG activity closely followed model-
derived signatures of reversal learning, implicating it in the suppression of previously rewarded
actions and in updating behavior in the absence of explicit punishment. These findings reveal a
previously unrecognized computational role for the PAG in value-based decision-making and
cognitive flexibility, and substantiate task-fMRI as a powerful tool to study the rodent brain at a

mesoscale resolution.
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Introduction

Decision-making often occurs under conditions of uncertainty, yet individuals are generally
capable of making decisions that lead to beneficial outcomes. This capacity relies on neural
mechanisms that support the estimation of outcomes and the adjustment of behavior in response
to changing environmental conditions, a process referred to as cognitive flexibility (Diamond,
2013). Reversal learning paradigms are prominently used to study cognitive flexibility across
species (Highgate & Schenk, 2020; Izquierdo et al., 2017), in which switching of contingencies
creates a violation of learned expectancies, resulting in rapid changes of behavioral responses. This
requires the ability to detect unexpected outcomes, suppress previously reinforced responses, and
update value representations in the light of new contingencies. These adaptive processes are

supported by reinforcement learning mechanisms in the brain.

Reinforcement learning refers to the process by which organisms learn to associate specific stimuli
or actions with rewarding or punishing outcomes, adapting their behavior to maximize positive
results and minimize negative ones (Dayan & Niv, 2008; O’Doherty et al., 2017). A fundamental
pathway supporting reinforcement learning is the dopaminergic input from the ventral tegmental
area (VTA) to the ventral striatum, and specifically the nucleus accumbens, which serves as a
teaching signal and plays a critical role in motivation and value-based decision-making (Barto,
1995; Glimcher, 2011; Montague et al., 1996; O’Doherty, 2004; Salamone & Correa, 2012;
Schultz et al., 1997). Yet this mesolimbic circuitry does not operate in isolation. Converging
evidence shows that other brain regions, including the prefrontal cortex, hippocampus, amygdala,
and potentially even the periaqueductal gray (PAG), shape how reinforcement-learning related
signals are generated, interpreted, and used (Ballard et al., 2019; Lee et al., 2012; Muller et al.,
2024; Paton et al., 2006; Roy et al., 2014). Fully characterizing the circuitry involved in these
behaviors therefore requires whole-brain approaches that can capture how canonical reward
pathways interact with systems traditionally studied in other contexts (e.g., in aversion and

defense).

Considerable understanding of brain-wide circuits contributing to reinforcement learning
processes has come from human fMRI studies, where computational modeling of trial-by-trial
neural signals has proven invaluable in dissecting the mechanisms by which brain regions encode

learning, predict behavior, and interact within functional networks (Daw et al., 2006; Niv, 2009;
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O’Doherty et al., 2003, 2007). Yet, despite their insight, human studies are inherently limited in
their ability to establish causality, perform precise circuit manipulations, or achieve the level of
experimental control possible in rodents. Extending this whole-brain imaging approach to
behaving rodents therefore offers a unique opportunity to link systems-level network dynamics
with cellular and molecular mechanisms of learning, bridging a critical translational gap. Until
recently, most rodent imaging studies focused on resting-state fMRI to map functional connectivity
across the mouse brain, further linking it with behavior (Bergmann et al., 2020; Grandjean et al.,
2017; Lichtman et al., 2021; Liska et al., 2018). Recent advances by us and others, including the
development of awake imaging setups and rodent-specific hemodynamic models (Bergmann et al.,
2025; Desai et al., 2011; Fonseca et al., 2020; Han et al., 2019; Kahn et al., 2011; Lawen et al.,
2025; Winkelmeier et al., 2022), now enable the implementation of reliable task-based fMRI.
These developments open the door to probing not only canonical reward regions but also
underappreciated contributors, offering a systems-level perspective that is critical for
understanding the distributed computations underlying reinforcement learning and behavioral
flexibility, which can then be further investigated and manipulated using invasive tools available

in rodents.

Here, we used task-based fMRI of behaving mice to characterize the neural processes involved in
a value-based decision-making task. We developed a non-invasive MR-compatible platform
enabling high-resolution behavioral monitoring of head-fixed mice, which facilitated a
longitudinal study of mice engaged in a go/no-go odor discrimination task followed by rule
reversal, allowing us to investigate the distinct neural mechanisms engaged in initial acquisition
versus reversal learning. We analyzed fMRI data using subject-specific trial-by-trial parameters
derived from a reinforcement-learning model to better capture the temporal dynamics of learning,
thereby improving predictive power and accounting for the small sample sizes feasible in rodent
studies. This approach revealed the involvement of different brain regions in acquisition and
reversal learning, including areas well-established as involved in goal-directed behavior like the
nucleus accumbens, the dorsomedial striatum and the orbitofrontal cortex, but also, surprisingly,
the PAG, which we found to be involved specifically in the reversal phase. Further examination
showed that the PAG exhibits differential activity depending on correct behavioral outcome, is
active during inhibition of lick responses to a “no-go” odor and is inactive during lick responses

to a “go” odor.
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97  Materials and Methods
98 Ethics

99  All animal experiments were conducted in accordance with the United States Public Health
100 Service’s Policy on Humane Care and Use of Laboratory Animals and approved by the

101 Institutional Animal Care and Use Committee of the Technion—Israel Institute of Technology.
102  Animals and housing conditions

103 Twelve C57Bl/6J male mice (2-3 months old) were housed in groups of 2—5 animals per cage in
104  areversed 12-h light—dark cycle with food and water available ad /ibitum prior to water restriction.
105  The housing room was maintained at 23 + 2 °C. All experiments were conducted during the dark

106  phase.

107  Head-post surgery

108  To minimize head movement during scanning, mice were implanted with MRI-compatible head
109  posts, as previously described (Bergmann et al., 2025; Lichtman et al., 2021). Briefly, mice were
110  anesthetized with isoflurane (1.5-2.5%), the scalp and periosteum were removed from above the
111 surface of the skull, and a head post was attached to the skull using dental cement (C&B Metabond,
112 Parkell, Brentwood, NY, United States). Mice received a subcutaneous injection containing broad-
113 spectrum antibiotics (Cefalexin) and analgesia (Buprenorphine) during the surgery and daily for
114  at least 3 days after the surgery, and were maintained in their home cage for a postoperative

115  recovery period of 1 week.

116  MR-compatible behavioral setup

117  Experiments were conducted using an MRI-compatible behavioral platform designed to enable
118  precise odor delivery, water reward control, and simultaneous recording of sniffing and licking
119  behavior. The system included a custom head-fixation cradle, an air-dilution olfactometer for rapid
120  odor presentation, the design of which has been previously described in detail (Arneodo et al.,
121 2018; Shusterman et al., 2011), a non-invasive sniff sensor, a pressure-based lick detector, and a
122 calibrated water-delivery mechanism. To adapt traditional olfactory setups for the MRI
123 environment, the olfactometer was positioned outside the scanner bore with its output routed
124 through a final solenoid valve located near the head-fixation apparatus. This configuration

125 minimized magnetic interference while maintaining fast odor onset kinetics (steady-state
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126  concentration reached within ~100 ms). Sniffing was measured through a modified odor port
127 connected to a miniature pressure transducer via short capillary tubing, providing stable, artifact-
128  free respiration signals. Lick detection was achieved using a pressure-based MRI-compatible
129  transducer, and water rewards (~2.5 pl per drop) were delivered through a solenoid-gated line
130  controlled by an Arduino microcontroller. The olfactometer delivered a continuous flow of clean
131 air (992 ml/min) that switched seamlessly to an odorized stream during stimulus presentation,
132 preventing mechanical cues. Odorized air was generated by diverting nitrogen through odorant
133 vials approximately 1 s before valve opening and mixing it into the main airflow to achieve a
134 tenfold dilution. The final odor pulse lasted 1 s, after which clean air resumed. All flow paths were
135  constructed from Teflon to prevent odor contamination. Odorant concentration profiles were
136  verified using a photoionization detector (PID, Aurora Scientific, model 200B). All behavioral and
137  control signals including sniffing, licks, valve triggers, and reward timing were synchronized and
138  recorded via MATLAB-based scripts. This high-resolution monitoring approach provided precise
139  temporal alignment between behavioral events and fMRI acquisition, ensuring accurate
140  characterization of sensory, motor, and reward-related processes. For a more detailed description

141  of the experimental setup, see Bergmann et al. (2025).
142 Flexible discrimination learning

143 Mice underwent an instrumental go/no-go odor discrimination task followed by a rule reversal in

144 which odor contingencies were switched.

145  Following postoperative recovery, mice were single-housed and placed on a 10-day water
146  restriction schedule, during which the amount of water was gradually reduced from 5 ml to 1 ml
147 (1 ml per day). Water restriction was maintained throughout the experiment, including weekends.
148 During pretraining (3—7 sessions), mice were first habituated to the setup to ensure acclimation to
149  the scanner environment and were trained during mock scanning to lick a spout to obtain water
150  rewards, with increasing inter-reward intervals (3—7 s), to shape stable licking behavior. Once mice
151  consistently licked to consume water in the MRI setup and exhibited stable sniffing signals, they
152 were scanned while performing the go/no-go task. All animals learned the task (i.e., there was no

153 attrition).

154  The task consisted of multiple six-minute blocks, with 50 trials (25 per odor) per block, in which

155  two neutral odorants (Pinene and Ethyl-Acetate) were presented pseudo-randomly. Each odor
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156  signaled either a rewarded (“go”) or unrewarded (“no-go’’) condition. On each trial (2.5 s), an odor
157  was presented for 1 s, and the animal was given a 2 s response window from odor onset. Inter-trial
158 interval ranged from 5-12.5 s. Given a correct lick response to the go odor, the reward was
159  delivered immediately. Lick responses to the no-go odor were not explicitly punished (only
160  implicitly as water was not provided for these incorrect responses), and no lick responses were not

161  rewarded.

162 During Acquisition, mice (n = 12) underwent 8—16 sessions (Supplementary Table 1) in which
163  they learned to produce a lick response to the go odor and to withhold licking to the no-go odor.
164  The first Acquisition session included 10—15 min of lick training during scanner calibration,
165  allowing acquisition of fMRI data of the first odor presentation. In subsequent sessions, 1-2 blocks
166  of the task were performed before fMRI data acquisition to allow for scanner calibration. These
167  blocks were included in the behavioral data presented in Figure 1 but were not included in the

168  fMRI analyses in subsequent figures.

169  Next, a subset of this cohort (n = 6) underwent a Reversal phase for 5—6 sessions (Supplementary
170  Table 1), during which they learned to lick in response to the presentation of the previously
171  acquired no—go odor and to suppress the previously acquired lick response to the go odor. The
172 Reversal group was randomly selected and showed learning performance similar to that of the
173 remaining Acquisition-only mice (see results section). In the first Reversal session, mice performed
174 1-2 blocks of the original odor discrimination test during scanner calibration to ensure fMRI data
175  acquisition for the first Reversal block. Subsequent sessions were performed using only the
176  Reversal task, for which the first 1-2 blocks started before the fMRI data were acquired and
177  therefore contributed to the behavioral data presented in Figure 1, but not to fMRI analyses in
178  subsequent figures. Odor identity (go vs. no-go in the Acquisition phase) was counterbalanced

179  across animals.
180  Reinforcement learning model

181  In order to model reinforcement learning we used a previously described (Nicholas et al., 2024)
182  variant of a model-free Q-learning algorithm (Rescorla, 1972; Sutton & Barto, 1998). The model
183  assumes a stored value, Q(odor, action), for choosing an action of licking or not licking in response
184  to a given odor. After each outcome, 7;, the Q value for the chosen action was updated according

185 to:
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Q(odor, action).+; = Q(odor, action); + a(r: — Q(odor, action),)

where the degree of updating was controlled by the learning rate a (Supplementary Fig.1A),
which was a free parameter that ranges between 0 and 1. Q values of unchosen actions and other

odors remained unchanged.

The model learned separate O values for each odor (go, no-go, and control (nitrogen flow without
odorant)) and action combination, such that six Q values were estimated in total, three for licking
(lick) and three for not licking (nolick). The two Q values corresponding to the present stimulus,

o, were used to compute a decision variable of the subject’s response on each trial:
AV, = Q(o, lick); — Q(o, nolick),
The probability of licking was modeled using a logistic function:

1
+ e—(Bot+B14Vt)

P(lick) = 1

where fo is an intercept parameter that accounts for the bias towards licking and S is an inverse
temperature parameter that estimates the sensitivity to the learned values of actions related to the

presented odor (Supplementary Fig.1B).
Model Fitting

We estimated model parameters for each animal using hierarchical Bayesian inference in order to
allow group-level priors to regularize subject-level estimates. This approach to (fitting
reinforcement learning models improves parameter identifiability and predictive accuracy (van
Geen & Gerraty, 2021) and has been used to fit similar Q-learning models (Nicholas et al., 2022).
We first split the subjects into two groups: one group that underwent only acquisition (n = 6) and
another that underwent a rule reversal following acquisition (n = 6). This splitting was performed
because we reasoned that pooling data together from all animals would artificially inflate the
learning rate of animals in the acquisition-only group. This is because animals in the reversal group
experienced more trials where new learning was required, effectively doubling the “volatility” of

this environment (Behrens et al., 2007).

To fit the model, the joint posterior was approximated using No-U-Turn Sampling (Hoffman &

Gelman, 2014) as implemented in Stan (Carpenter et al., 2017). Four chains with 2000 samples
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213 (1000 discarded as burn-in) were run for a total of 4000 posterior samples per model. Chain

214  convergence was determined by ensuring that the Gelman-Rubin statistic, R, was close to 1.
215 The model’s likelihood function can be written as:

216 Cs¢ ~ Bernoulli(6;,)

217 where ¢, is 1 if subject s chose to lick on trial ¢ and 0 if the subject chose not to lick, and 6, is
218  the estimated probability of this subject licking on this same trial. Following the recommendations
219  of (Gelman & Hill, 2006), each subject’s intercept and inverse temperature s were drawn from a

220  multivariate normal distribution with mean vector pz and covariance matrix 2g:

221 Bs ~ MultivariateNormal(ug, 2g)

222 where Xg was decomposed into a vector of coefficient scales g and a correlation matrix (2 via:
223 2 = diag(tg) X flg X diag(tp)

224 We set weakly-informative hyperpriors on the group-level hyperparameters g, g and 75:

225 ug ~ N(0,5)
226 73 ~ Cauchy*(0,2.5)
227 g ~ LK]Corr(2)

228  Each subject’s learning rate parameters were also fit hierarchically with the following prior and
229  hyperpriors (al, a2):
as; ~ Beta(al,a2)
230 al ~ N (0,5)
a2 ~ N(0,5)

231 A description for why these prior and hyperpriors were chosen, as well as further details about the

232 parameterization, can be found in Nicholas et al. (2022).
233 Image acquisition and preprocessing

234  MRI data were acquired as previously described (Bergmann et al., 2025). In brief, scans were

235  acquired with a 9.4 Tesla MRI (Bruker BioSpin, Ettlingen, Germany) using a quadrature 86 mm
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236  transmit-only coil (Bruker BioSpin) and a 20 mm loop receive-only coil (Bruker BioSpin), and
237  were reconstructed using ParaVision 5.1 (Bruker). Mice underwent multiple sessions of event-
238  related fMRI (6-14 sessions during Acquisition, 5—6 sessions during Reversal), with each session
239  containing multiple runs (2—12 runs per session), i.e., task blocks (see Flexible discrimination
240  learning section). The rapid-presentation event-related design was generated using Optseq2

241  (Greve, 2002).

242 Mice were anesthetized for a short period of time (5% isoflurane) at the start of each session to
243 allow for positioning them in the scanner. For each session, a relaxation enhancement (RARE) T2-
244  weighted structural imaging (50 coronal slices, TR/TE 2300/8.5 ms, RARE factor=4, flip
245 angle=180°, 200 x 200 x 300 um?, field of view of 19.2 x 19.2 mm?, matrix size of 96 x 96) was
246  first acquired while the mice performed the odor discrimination task. Then, blood oxygenation-
247  level dependent (BOLD) contrast run scans were acquired for six minutes using spin echo-echo
248  planar imaging (SE-EPI) sequence (TR/TE 2500/13.022 ms, flip angle =90°, 50 coronal slices,
249 voxel size 200 x200x 300 um?, field of view of 14.4 x 9.6 mm?, matrix size of 72 x 43).
250  Preprocessing of raw data included removal of the first two volumes for T1-equilibration effects,
251  compensation for slice-dependent time shifts, rigid body correction for head motion, semi-
252  automatic linear registration (FSL FLIRT) to the Allen Mouse Brain Common Coordinate
253  Framework version 3 (CCFv3, Kuan et al., 2015; Lein et al., 2007) that included a manual
254  correction step for each session to validate proper alignment, and spatial smoothing with a full

255  width at half maximum (FWHM) of 500 um.
256  fMRI data analysis

257  fMRI data were analyzed using SPM12 (Wellcome Department of Cognitive Neurology, London,
258  UK) and SnPM13 (http://nisox.org/Software/SnPM13/). The design matrices of all general linear

259  models (GLM) computed in this study included the following nuisance regressors: global signal,
260  ventricles signal, six motion parameters and their first-order derivatives, run constant for all runs

261  excluding the last run, and events with frame displacement larger than the voxel size (200 um).

262  Whole-brain analysis

263 In order to detect brain regions involved in tracking the value of an action (lick/no-lick) in a given

264  state, we performed a whole-brain analysis using the decision variable (see Reinforcement-

10
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265  learning model section) as a covariate. For each animal, all sessions of the relevant experimental
266  stage (Acquisition/Reversal) were combined to generate a single GLM in which events were
267  defined as stimulus onset with a duration of zero. In addition, a decision variable regressor was
268  created as a covariant by convolving the decision variable values with the mouse hemodynamic
269  response function (HRF) previously modeled by our group (Bergmann et al., 2025). Due to the
270  relatively slow TR (2.5 s) and the short dynamics of the mouse HRF, it was not possible to
271  disentangle the stimulus, choice and feedback, and therefore, events were defined as single whole
272 trials. A linear contrast of regressor coefficients was computed at the single-subject level for the
273  decision variable regressor and was further used for a second, group-level analysis using a one-
274  sample t-test. All group-level statistical maps were corrected for multiple comparisons using
275  family-wise error correction. For the group-level parametric analysis (n = 12; Figure 2), the voxel
276  extension was set to 5 voxels. For non-parametric statistical maps (n = 6; Figure 3), a permutation

277  test was performed using the sign-flip approach in which 64 permutations, the equivalent of
278  2'subieet were computed. To allow for cluster-level inference, we defined the variance smoothing

279  to be the same FWHM that was applied to the data as instructed by SnPM13 manual. The cluster-
280  defining threshold was set to ¢ statistic of 6 (~ p < 0.001, df = 5, prior to cluster-level inference),

281  resulting in a critical STCS (suprathreshold cluster size) of 3 voxels.

282  Brain regions identified in the whole-brain analysis but located near fiber tracts, MRI artifacts, or

283  close to the brain’s boundaries were excluded from the results section.
284  Region of interest (ROI) analysis

285  Following the whole-brain findings of brain regions that are correlated to the Q-learning
286  computation, we wanted to further assess the contribution of each of these regions to specific
287  cognitive processes. Thus, for each experimental stage (Acquisition and Reversal), we defined each
288  trial as an event based on the subject’s response (Hit, False Alarm [FA], Correct Rejection [CR],
289 and Miss) and generated a GLM per subject for each session separately with regressors
290  corresponding to the different event types. We created specific ROI masks for regions identified
291  based on the overlap between contiguous clusters of voxels in the statistical parametric/non-
292 parametric maps and the Allen Mouse Brain Connectivity (AMBC) atlas (Supplementary Fig. 3).
293  We used the MarsBaR toolbox (Brett et al., 2002) to extract finite impulse responses, plotting the

294  hemodynamic response without assumptions on its response characteristics, with the onsets shifted

11
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295 by 5 sto allow to observe the pre-trial baseline and the full evolution of the response. We note that
296  while the GLM used to identify the regions and the ROIs used in the ROI analysis are not
297  independent, the inferences derived from this analysis are intended to characterize how Hits, FAs,
298  CRs and Misses contribute to the response first identified in the Q-learning GLM which modeled
299  the go and no-go conditions with the estimated decision variable as a parametric regressor. The
300 ROI analyses therefore serve to quantify the fMRI response at both the individual-animal level

301 and across these conditions.
302  Statistical analyses

303  Behavioral data were analyzed using MATLAB R2023 (The Mathworks, Natick, MA, USA),
304  except for analysis of variance (ANOVA) which was performed using jamovi 2.3. For all repeated
305 measures ANOVA tests, time was defined as a within-subject factor and the parametric tests were
306  corrected for sphericity violation using the Huynh-Feldt method. For fMRI data, repeated
307 measures ANOVA was performed in R (R Core Team, 2024) using RStudio (RStudio Team,

308  2020), with sphericity violation corrected using the Greenhouse-Geisser method.

309 Results

310  We utilized an experimental setup that allows for the delivery of odors into the scanner alongside
311  a closed-loop system for lick detection and water delivery, allowing us to perform behavioral
312 experiments with high precision in head-fixed mice (for a full description of the setup, see
313  Bergmann et al., 2025). In this study, mice (n = 12) learned to perform an instrumental odor
314  discrimination task while undergoing fMRI scanning (Figure 1A), with a subset of mice (n = 6)

315  undergoing a rule reversal phase during which the action-outcome contingencies were switched.

316  Mice learn action-outcome associations and subsequent rule reversal in a go/no-go odor

317  discrimination task

318  During task Acquisition, mice learned to discriminate between the rewarded stimulus (S+) and the
319  unrewarded stimulus (S-) and reached a performance criterion of >80% correct responses by the
320 fourth day (Figure 1B). A repeated-measures analysis of variance (rm-ANOVA) revealed a
321  significant effect of Time (F(5,11) = 25.2, p < 0.001, > = 0.585) as mice gradually learned the
322 action-outcome associations for both stimuli. Evaluation of the reaction time from odor delivery

323 to a lick response showed a decrease throughout sessions as animals became more proficient in
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324  the task (Figure 1C). Next, after the mice reached the criterion and maintained it, task
325  contingencies were switched in the Reversal stage. Mice rapidly learned the new contingencies
326  (Figure 1D), reaching a performance criterion on average within two sessions (Friedman rm-
327  ANOVA; »? (4,6) = 16.8, p <0.01). The ability to quickly adapt to the switch in contingencies can
328  be further observed by a decrease in reaction time throughout sessions during the Reversal phase
329  (Figure 1E). Overall, mice presented goal-directed behavior during the experiment as indicated
330 by the gradual lick responses to rewarded stimuli only (without using punishment for incorrect
331  responses), as can be observed by a significant difference in reaction time for the first session of
332 reversal relative to acquisition (Figure 1F; Wilcoxon Signed-rank test; W = 20, p < 0.05).
333  Importantly, when evaluating for differences between the sub-group of mice that underwent only
334  the acquisition phase and that who underwent a following reversal phase, we found no significant
335  differences in learning the initial action-outcome association (two-way rm-ANOVA, F(1,11) =

336 0.231, p = 0.947, 2 = 0.006).

337  Next, we used a reinforcement-learning model in order to parameterize the value of an action to a
338 given odor. Specifically, we used a model-free Q-learning algorithm to allow for trial-by-trial
339  estimation of action values (Q) of each odor to assess the process of choosing an action based on
340  prior experiences. As estimated by the model, the probability of choosing to lick for the go odor
341  accurately captures the experimental data (Figure 1G), showing a sharp decrease in probability at
342  the point of reversal with a steep recovery. To illustrate Q-learning estimation, we plotted the
343  decision variable values for one of the mice that participated in both Acquisition and Reversal
344  (Figure 1H), demonstrating that the majority of learning occurred within approximately 500 trials
345  in both stages (the equivalent of approximately two sessions), matching the time required to reach

346  criterion for this animal. Similar estimation was observed for the other mice (not shown).
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348  Figure 1. Mice display flexible discrimination learning in a Go/No-go task in an experimental setup
349  allowing for task-based fMRI. (A) [llustration of behavioral setup and task design. Odors were presented
350  pseudo-randomly for 1 second with a response window lasting 2 seconds from odor onset. (B) Learning
351  curve showing the averaged ratio of correct responses (Hit and Correct Rejection events) during task
352  acquisition (n = 12). (C) Averaged reaction time of lick responses to Hit trials as a function of session. (D)
353  Learning curve showing averaged ratio of correct responses (# = 6). Blue line indicates the last acquisition
354  session prior to reversal. Purple line indicates the reversal phase. (E) Averaged reaction time of lick
355  responses to Hit trials as a function of sessions during the reversal phase. (F) Pairwise comparison of the
356  averaged reaction time for the first session in acquisition vs. reversal. (G) Averaged probability of choosing
357  tolick inresponse to ‘go’ trials (n = 6). The gray dashed line indicates the rule reversal onset (95% Clacquisition
358  =10.580, 0.966], 95% Cleversat = [0.157, 0.942]). (H) Decision variable (Qiick — Qno-lick) parameter of a
359  representative animal as computed by the Q-learning model throughout the experiment. The yellow line
360  represents odor A and the orange line represents odor B. The gray dashed line indicates the time of rule
361  reversal. Data are shown as mean + SEM (B, C, D and E). *p < 0.05.

362  Brain responses indicative of value-based decision-making in the mouse brain

363  We sought to characterize the neural responses that are involved in reinforcement learning during
364  flexible discrimination learning. We used the Q-learning algorithm in order to detect brain regions
365  that take part in computing the value of choosing an action (lick/no-lick) to a given odor stimulus.
366  Regions that track the decision variable estimated by the model, therefore, reflect the dynamic
367  nature of learning at the individual-animal level. Specifically, in this task, regions identified using
368  the decision variable are implicated in learning odor-action associations: one odor signals that
369  licking will result in water delivery, while the other odor signals that licking will not yield reward.

370  Though incorrect responses are not explicitly punished, animals learn to avoid unrewarded actions.

371  To evaluate responses in the task acquisition stage, we used high-field fMRI (9.4T) to measure
372 distributed brain activity from the naive state to task proficiency. We entered the decision variable
373  of each animal (n = 12) as a parametric modulator in first-level GLM analysis, then conducted a
374  second-level group analysis, calculating a statistical parametric map of regions that correlate with
375  the decision variable (Figure 2). We observed responses in the basal ganglia (nucleus accumbens
376  [ACB]), dorsomedial striatum [DMS], dorsolateral striatum [DLS] and globus pallidus externus
377  [GPe]), regions in the insular cortex (agranular insular area [Al]) related to rewards and learning
378  the cue-reward association, regions related to odor processing (tenia tecta [TTd] and anterior
379  olfactory nuclei [AON]), regions related to avoidance and stress regulation (bed nucleus of the
380  stria terminalis [BST]), and regions related water consumption (posterior Al/gustatory cortex

381  [GU]). The most prominent responses (numerically) were observed in the striatum (ACB and
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382  DMNS). Overall, this measure reflects responses in brain regions previously implicated in value-

383  based decision-making.
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385  Figure 2. Neural substrates of Q-learning signals during go/no-go task acquisition. Group-level
386  parametric one-sample ¢ statistic maps showing BOLD response correlates of the decision variable values
387  from the Q-learning model (n = 12 mice). The red color spectrum indicates areas with positive correlations
388  to decision variable values, while blue colors indicate negative correlations. Maps are presented on the
389  averaged raw fMRI data (spin-echo echo planar imaging) and annotated based on the Allen Mouse Brain
390  Atlas; p <0.05, corrected for multiple comparisons using family-wise error correction, voxel extension of
391 5. ACB, nucleus accumbens; Al, agranular insular area; AON, anterior olfactory nuclei; BST, bed nucleus
392  ofthe stria terminalis; GU, gustatory cortex; DLS, dorsolateral striatum; DMS, dorsomedial striatum; GPe,
393  globus pallidus externus; TT, tenia tecta; d, dorsal; v, ventral.

394  Next, we sought to characterize the neural responses during rule reversal. Reversal learning
395  paradigms evaluate behavioral flexibility by switching the contingencies between stimuli and their
396  outcomes, requiring subjects to change their learned responses when they encounter no reward for
397 a previously rewarded response, as well as the ability to beneficially respond to a stimulus that
398  was previously not reinforced. Using this experimental manipulation, we wanted to identify brain
399  regions that are active during this cognitive process. Given that only a subset of mice underwent
400  rule reversal, we used a non-parametric approach for whole-brain analysis and ran a permutation
401  test. A GLM modeling the decision variable at the reversal stage of each animal (n = 6) was entered
402  into a second-level group one-sample #-test, resulting in a statistical non-parametric map (Figure
403  3) of regions that were preferentially positively or negatively correlated with the value of licking

404  or not licking, respectively. This map reveals the involvement of several regions that correlate with
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405  the decision variable values, showing a positive correlation in frontal and insular cortices
406  (orbitofrontal [ORB] and AI/GU cortices), striatum (ACB and DMS), pallidum (medial septum
407  [MS] and GPe) and olfactory processing regions (AON), and negative correlation in the dorsal
408  hippocampus (HIPP) and ventral PAG.
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410  Figure 3. Neural substrates of Q-learning signals during reversal learning. Group-level non-parametric
411  maps showing BOLD response correlates of the decision variable values from the Q-learning model (n = 6
412 mice). The red color spectrum indicates areas with positive correlations to the decision variable values,
413  while blue colors indicate negative correlations. Maps are presented on an average raw fMRI data (spin-
414 echo echo planar imaging) and annotated based on the Allen Mouse Brain Atlas; p < 0.05, corrected for
415  multiple comparisons using family-wise error correction, voxel extension of 3. ACB, nucleus accumbens;
416  Al, agranular insular area; AON, anterior olfactory nuclei; DMS, dorsomedial striatum; GPe, globus
417  pallidus externus; GU, gustatory cortex; HIPP, hippocampus; MS, medial septum; ORB, orbitofrontal
418  cortex; PAG, periaqueductal gray.

419  Activation of PAG correlates with beneficial behavioral responses in reversal learning only

420  Given recent findings suggesting that PAG represents an aversive prediction error, and the lack of
421  evidence linking it to reversal learning and action value, especially under appetitive conditions,
422 we next sought to characterize its responses in contrast to those in the ACB, a well-established
423 region for prediction error computation. We therefore examined the PAG and ACB contributions

424 to the different cognitive components of discrimination learning using an ROI analysis, and looked
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425  at finite impulse responses (FIR) for conditions differentiated by their behavioral responses,
426  whether correct or incorrect, and their outcomes (Hit, Correct Rejection, False Alarm, and Miss;

427  see Supplementary Fig. 2 for behavioral performance).

428  We estimated FIR-based BOLD response time courses from the PAG and ACB and computed the
429  mean area under the curve (AUC) across time points for each session to quantify overall response
430  magnitude. Focusing on the PAG, a two-way repeated-measure ANOVA, with Condition (Hit,
431  Correct Rejection, False Alarm, and Miss) and Session as within-subject factors, revealed a
432 significant main effect of Condition (F(1.77,8.87)=15.17, p < 0.01, generalized n?=0.34),
433  indicating that AUC varied across behavioral outcomes, distinguishing correct from incorrect
434  responses, and as can be seen in the analyses below, was driven mainly by positive responses to
435  Correct Rejection and negative to Hit. In contrast, neither the main effect of Session nor the
436  Session x Condition interaction was significant, suggesting that overall effects were stable across
437  sessions, with learning occurring in the first session, consistent with the animals’ behavioral
438  outcomes. Analysis of AUC values from the ACB showed a significant main effect of Condition
439  (F(1.66,8.30)=20.61, p<.001, generalized n?>=0.55) and a significant interaction of Session
440  x Condition (F(12,60)=2.20, p=.023, generalized n?=0.19), with no significant effect of

441 Session.

442  Next, we compared responses between the PAG and ACB. Given that as the animal learns the
443  decision variable stabilizes and is maximally different between correct licks for the go odor (Hit)
444  and avoidance for the no-go odor (Correct Rejection) (Figure 1H), we focused on these two
445  conditions during the last Reversal session when mice had already fully learned the rule reversal
446  (Figure 4). A two-way repeated-measure ANOVA revealed a significant interaction of
447  ROI x Condition (£ (1,5)=55.13, p<.001, generalized n* = 0.83), indicating that the behavioral
448  effect of Condition reversed between PAG and ACB. Post hoc pairwise comparison performed
449  within each ROI demonstrated that ACB showed a strong activation to Hit events and inactivation
450 to Correct Rejection (Figure 4B,C; bottom row) (¢#(5)=4.19, p=.020, Holm-adjusted).
451  Conversely, PAG showed inactivation to Hit events and activation to Correct Rejection (Figure
452 4B,C; top row; ¢ (5)=8.95, p=0.002). Additional cross-region contrasts confirmed this double
453  dissociation, showing that for Correct Rejection the AUC was higher in PAG than in ACB,
454  whereas for Hit the AUC was higher in ACB than in PAG (both p <0.025, Holm-adjusted). Taken
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455  together, these findings reveal a crossover interaction in which ACB and PAG exhibit opposite
456  BOLD response modulations for Correct Rejection versus Hit conditions, highlighting distinct

457  functional contributions of the two regions to outcome processing.
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458  Figure 4. Opposing roles of the periaqueductal gray (PAG) and nucleus accumbens (ACB) in
459  mediating adaptive behavior in proficient mice. Region of interest (ROI) analysis showing the time
460  course fMRI BOLD response in PAG (fop) and ACB (bottom) for the fifth session in the reversal stage. (A)
461  ROI masks are presented on an average raw fMRI image (spin-echo echo planar imaging). (B) BOLD fMRI
462  Responses to Hit (lick response to go trials; green) and (C) Correct Rejection (no lick to no-go trials; blue)
463  are shown. The thick lines represent the group averaged response and the thin lines show individual
464  animals. The gray boxes at time zero depict the odor stimulus timing (1 s). Group mean area under the
465  curve (AUC) of the fMRI response (filled circles) and individual animals (open circles) demonstrate
466  consistent responses at the group and individual animal levels.

467  Finally, we wanted to examine whether the activity observed in PAG is specific to reversal learning
468  or whether this region contributes to acquisition learning as well (Figure 5). We extracted FIR
469  responses for an Acquisition session at a timepoint corresponding to reversal learning, when mice
470  demonstrated comparable performance levels (Figure SA; Wilcoxon Signed-rank test; p =1, Z =
471  0), and computed the AUC values for the two conditions. Looking at the Hit condition, we found
472  a significant decrease in AUC values for Acquisition relative to Reversal (Figure 5B; Wilcoxon
473 Signed-rank test; p = 0.031, Z = 21). Comparison of the Correct Rejection condition revealed a
474  trend (Figure 5C; Wilcoxon Signed-rank test; p = 0.093, Z = 2), showing overall decrease in AUC

475  values. Further, PAG responses during the Acquisition phase were not significantly different than
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476  baseline in both conditions (Sign test; Hit: p = 0.218, sign = 1; Correct Rejection: p = 1, sign = 3).
477  Collectively, the results indicate that the subregion in PAG that was found to be important for
478  learning of correct behavioral responses in Reversal does not seem to be important for Acquisition.
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479  Figure 5. PAG responses do not contribute to adaptive behavior in proficient mice during
480  Acquisition. (A) Pairwise comparison of behavioral performance during Acquisition vs. Reversal for
481  sessions 4/5. (B) FIR responses for Hit condition during Acquisition (left). Pairwise comparison of AUC
482  values showing individual animals for Acquisition vs. Reversal (right). (C) FIR responses for Correct
483  Rejection condition during Acquisition (left). Pairwise comparison of AUC values showing individual
484  animals for Acquisition vs. Reversal (right). For FIR responses, the thick lines represent group averages
485  and the thin lines show individual animals. The gray boxes at time zero depict the odor stimulus timing (1
486  s). *p<0.05,"p<0.1,n.s. no significance. Insets show PAG region of interest mask presented on an average
487  raw fMRI image (spin-echo echo planar imaging).
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488  Discussion

489  Flexible, goal-directed behavior relies on the capacity to adapt action—outcome associations when
490  contingencies change. This process, typically studied using reversal learning paradigms, is thought
491  to depend on corticostriatal circuits and dopaminergic teaching signals, yet it remains unclear
492  whether additional brain regions may also contribute. Whole-brain imaging approaches provide
493 an opportunity to address this question. In this study, we found that the periaqueductal gray (PAG)
494  contributes to cognitive flexibility by supporting the suppression of previously reinforced actions
495  in the absence of explicit punishment, and assessed its contributions relative to the nucleus
496  accumbens. By combining task-based fMRI with reinforcement learning modeling in mice
497  performing an odor discrimination task, we found that acquisition was supported by the nucleus
498  accumbens, whereas reversal learning additionally engaged the PAG. Notably, PAG responses
499  contrasted with those in the nucleus accumbens, exhibiting preferential activation during correct
500  rejection of no-go cues and suppression during correct approach to go cues. Together, these results
501 identify the PAG as a key contributor to reversal learning, expanding current models of the neural
502  mechanisms underlying behavioral flexibility. Moreover, they highlight the strength of whole-
503  brain fMRI in rodents, demonstrating that novel findings can emerge even within a well-

504  established and extensively studied behavioral paradigm.

505 By applying a model-free reinforcement-learning algorithm we were able to capture trial-by-trial
506  dynamics of value updating and link them to fMRI responses. This computational approach was
507  essential for detecting the emergence of PAG activity during reversal, as it allowed us to model
508 how action values evolve across individual trials rather than relying on averaged performance
509  measures. Computational modeling of reinforcement learning has been highly influential in human
510  fMRI studies (Niv, 2009; O’Doherty et al., 2003), and its value has only recently been shown in
511  rodent fMRI as well (Winkelmeier et al., 2022). Our results demonstrate the feasibility and utility
512 of such models in animal neuroimaging, highlighting how model-based analyses can improve
513  sensitivity to dynamic neural processes underlying learning. This methodological advance also

514  paves the way for more direct cross-species comparisons of reinforcement learning circuitry.

515  Beyond the striatum, our whole-brain analyses revealed that acquisition engaged a distributed set
516  of regions, including the agranular insula, gustatory cortex, anterior olfactory nuclei, and bed

517  nucleus of the stria terminalis. These findings are consistent with prior reports that value-based
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518 learning recruits not only canonical reward regions but also areas involved in sensory processing,
519  interoception, and stress regulation (FitzGerald et al., 2013; Ge & Balleine, 2022; Hernandez-Ortiz
520 etal, 2023; Kogan & Fontanini, 2024; Levinson et al., 2020). The engagement of olfactory and
521  gustatory cortices likely reflects the multimodal nature of the task, while activity in the insula and
522 bed nucleus of the stria terminalis may reflect the integration of reward signals with internal state
523  and arousal. Together, these observations emphasize that flexible discrimination learning emerges
524  from the interaction of distributed brain systems, with the PAG contributing selectively during

525  reversal to bias action suppression once initial associations have been formed.

526  Classically, the PAG has been implicated in defensive behaviors (Bandler & Keay, 1996; Carrive,
527  1993), processing nociceptive signals (Basbaum & Fields, 1984; Behbehani, 1995), and
528  coordinating autonomic responses to threat (Dampney, 1994; Keay & Bandler, 2001). However,
529  there has been emerging evidence linking it to behavioral flexibility and value-based decision-
530  making (Ozawa et al., 2017; Reis et al., 2021; Sukikara et al., 2006; Wright & McDannald, 2019).
531 Recent work has highlighted PAG as a potential relay between brainstem value signals and
532  forebrain decision circuits (Gorka et al., 2023; Roy et al., 2014). Further, PAG neurons were shown
533  to encode both negative and positive prediction errors (Walker et al., 2020; Wright & McDannald,
534 2019), and project to thalamic and cortical areas implicated in strategy updating (Assareh et al.,
535  2016; Faull et al., 2019; Kragel et al., 2019; Krout & Loewy, 2000). Thus, PAG serves as a hub
536  that transforms aversive sensory input into adaptive motor and physiological outputs, thereby
537  guiding rapid survival-related responses. While the majority of previous studies linking PAG to
538  reinforcement learning processes used aversive, pain-related paradigms, our task design allowed
539  for reversal learning to occur in the absence of explicit punishment. Mice adapted their behavior
540  solely through the omission of expected reward, suggesting that PAG activity may contribute to
541  updating value representations when contingencies change, even under neutral conditions. Our
542  results extend the current framework by showing that PAG recruitment can occur in appetitive
543  tasks without negative reinforcement, highlighting its broader role in signaling the need to suppress
544  outdated responses. This observation aligns with a proposal that PAG contributes to the evaluation
545  of approach versus avoidance strategies in changing environments (Tryon & Mizumori, 2018) and

546  suggests it may act as a general mediator of adaptive response suppression.
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547  The region of interest analysis revealed a striking double dissociation between PAG and nucleus
548 accumbens activity during reversal learning. Whereas nucleus accumbens responses were
549  strongest for rewarded licks (hits), PAG responses were selectively enhanced during correct
550  rejections. This opposing response indicates that PAG and nucleus accumbens contribute
551  complementary signals to support flexible decision-making. The nucleus accumbens has long been
552 implicated in representing positive prediction errors and guiding approach behavior (Montague et
553  al., 1996; Nicola, 2007; Schultz et al., 1997). By contrast, the PAG response profile suggests a role
554  inreinforcing the suppression of actions that no longer yield reward, consistent with its established
555  involvement in aversive learning (Johansen et al., 2010; Walker et al., 2020). This opponency
556  suggests that midbrain and striatal circuits jointly encode both the drive to exploit rewarded
557  contingencies and the need to avoid perseverating on outdated responses. Through its reciprocal
558  connections with both brainstem neuromodulatory centers and midbrain dopamine neurons, the
559  PAG is anatomically poised to influence the teaching signals that drive reinforcement learning
560  even in conditions beyond those classically associated with it. Namely, avoidance learning could,
561 at least in part, be mediated by PAG computations by biasing dopaminergic signaling toward

562  actions in situations where no explicit punishment occurs.

563  Importantly, PAG responses were not observed during initial acquisition, even when behavioral
564  performance was comparable to that achieved in reversal. This indicates that PAG recruitment is
565 not a general feature of value-based learning, but rather emerges selectively when animals must
566  overcome prior learning. The specificity of PAG involvement in reversal echoes prior rodent and
567  primate studies implicating cortical circuits, the orbitofrontal cortex in particular, in behavioral
568  flexibility (Cools et al., 2002; Ghahremani et al., 2010; Izquierdo et al., 2017; Schoenbaum et al.,
569  2006). Our findings extend this literature by demonstrating that the PAG is also selectively
570  engaged under reversal conditions. This supports the notion that flexible decision-making depends
571  on coordinated contributions from both cortical and subcortical regions, with PAG providing a key

572 midbrain computation to facilitate behavioral adaptation.

573  Collectively, our results expand the functional repertoire of the PAG beyond its established role in
574  aversion and defensive behaviors, positioning it as a key node in the neural circuitry that supports
575  flexible decision-making. By demonstrating that PAG activity is selectively recruited during

576  reversal learning, and exhibits functional opponency with striatal reward signals, our findings
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577  suggest that PAG contributes to updating value representations when prior contingencies are no
578  longer valid. This role is particularly notable given that mice adapted their behavior without
579  explicit punishment, implying that PAG computations may bias action selection toward adaptive
580 avoidance even in neutral contexts. More broadly, these results underscore the importance of
581  brainstem—forebrain interactions in reinforcement learning and provide a systems-level framework
582  for future studies examining how PAG signals integrate with dopaminergic and cortical circuits to
583  support cognitive flexibility. Elucidating these mechanisms will be critical for understanding how
584  distributed midbrain circuits contribute to adaptive behavior and how their dysfunction may

585  contribute to neuropsychiatric disorders characterized by impaired behavioral flexibility.
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605  Supplementary Figure 1. Group parameters computed by the Q-learning algorithm. Fitting

606  parameters are shown for the two modeling groups: acquisition only (blue) and acquisition following
607  reversal (purple; n = 6 per group). (A) Learning rate parameter alpha. (B) Beta estimates for intercept (bias
608  to lick), odor 1 (go stimulus), odor 2 (no-go stimulus) and control for changes in airflow during final valve

609  opening (nitrogen).
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611 Supplementary Figure 2. Group performance for the different discrimination conditions during
612  Reversal. Behavioral performance rates across five consecutive sessions during the Reversal phase divided
613 Dby the lick response of the animal to each cue type: Hit (lick to go odor; green), Miss (no lick to go odor;
614  yellow), False Alarm (FA, lick to no-go odor; red) and Correct Rejection (CR, no lick to no-go odor; light
615  blue). Filled circles indicate group mean and open circles indicate individual subjects (n = 6).
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A Averaged SE-EPI B Allen Mouse Brain Connectivity Atlas

616
617  Supplementary Figure 3. Spatial localization of the periaqueductal gray across fMRI and atlas space.

618  (A) Periaqueductal gray mask (yellow) defined based on regions showing a significant BOLD response in
619  the whole-brain analysis and further used in the ROI analysis. The ROI mask is presented on an average
620  raw fMRI data (spin-echo echo planar imaging), shown as sequential coronal slices with a slice thickness
621  of 300 um. (B) Coronal images (/eft, atlas; right, two-photon tomography) taken from the Allen mouse
622  brain connectivity atlas that correspond to the spatial location of the fMRI data. The region highlighted in
623  purple denotes the Periaqueductal gray as defined by the Allen Institute. Image identification numbers are
624 87 (bottom) and 90 (top) in the reference atlas.
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Supplementary Table 1. Summary of number of sessions completed by each subject.

Subject # Sessions
Behavior fMRI
Acquisition  Reversal | Acquisition | Reversal

Subject 01 10 — 9 —
Subject 02 10 — 9 —
Subject 03 6 — 6 —
Subject 04 9 5 8 5
Subject 05 15 — 15 —
Subject 06 16 6 14 6
Subject 07 15 6 13 6
Subject 08 14 6 12 6
Subject 09 9 — 9 —
Subject 10 9 — 9 —
Subject 11 8 8

Subject 12 8 8

Summary of maximal number of sessions (one session per day) completed by each subject during the
Acquisition and Reversal experimental phases (Behavior). All subjects reached learning criterion in the
Acquisition phase by the fourth session (3.583 + 1.621, mean + SD). Of the 6 subjects participating in the
Reversal phase, 3 subjects completed 8-9 sessions, and 3 completed 14—16 sessions. This manipulation
was used to rule out that an extended number of sessions during Acquisition affects the results observed
during Reversal. The table also shows the number of usable fMRI data (fMRI) session, as some were

excluded due to software issues or poor performance inside the scanner.
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