

1

2 **The Periaqueductal Gray Selectively Supports Reversal Learning**

3 **During a Flexible Discrimination Task in Mice**

4

5 Daniela Lichtman,^{1,2} Eyal Bergmann,^{1,2} Jonathan Nicholas,³ Raphael T. Gerraty,² and Itamar
6 Kahn^{2,*}

7

8 ¹Department of Neuroscience, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology,
9 Haifa 31096, Israel

10 ²Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia
11 University, New York, NY

12 ³Department of Psychology, New York University, New York, NY

13
14 *Corresponding Author:
15 ik2508@columbia.edu
16 Mortimer B. Zuckerman Mind Brain Behavior Institute
17 Columbia University
18 3227 Broadway St., New York, NY 1002

19 **Abstract**

20 Flexible, goal-directed behavior depends on the ability to update value representations in response
21 to changing contingencies. This ability depends on distributed brain networks, calling for use of
22 whole-brain imaging. Widely used in human research, the challenge of functional fMRI in rodents
23 has only recently been properly addressed, opening the door to whole-brain imaging of behaving
24 mice. Here, we used functional MRI in mice performing a go/no-go odor discrimination task, we
25 compared neural activity during initial cue-reward learning (acquisition) and subsequent
26 contingency reversal. Trial-by-trial estimates of state-action values from a model-free
27 reinforcement-learning algorithm allowed us to dissociate acquisition from reversal-related
28 signals, revealing that ventral striatal responses tracked expected value during acquisition, whereas
29 reversal learning additionally recruited the periaqueductal gray (PAG), a midbrain structure
30 classically linked to threat processing and aversive learning. PAG activity closely followed model-
31 derived signatures of reversal learning, implicating it in the suppression of previously rewarded
32 actions and in updating behavior in the absence of explicit punishment. These findings reveal a
33 previously unrecognized computational role for the PAG in value-based decision-making and
34 cognitive flexibility, and substantiate task-fMRI as a powerful tool to study the rodent brain at a
35 mesoscale resolution.

36 Introduction

37 Decision-making often occurs under conditions of uncertainty, yet individuals are generally
38 capable of making decisions that lead to beneficial outcomes. This capacity relies on neural
39 mechanisms that support the estimation of outcomes and the adjustment of behavior in response
40 to changing environmental conditions, a process referred to as cognitive flexibility (Diamond,
41 2013). Reversal learning paradigms are prominently used to study cognitive flexibility across
42 species (Highgate & Schenk, 2020; Izquierdo et al., 2017), in which switching of contingencies
43 creates a violation of learned expectancies, resulting in rapid changes of behavioral responses. This
44 requires the ability to detect unexpected outcomes, suppress previously reinforced responses, and
45 update value representations in the light of new contingencies. These adaptive processes are
46 supported by reinforcement learning mechanisms in the brain.

47 Reinforcement learning refers to the process by which organisms learn to associate specific stimuli
48 or actions with rewarding or punishing outcomes, adapting their behavior to maximize positive
49 results and minimize negative ones (Dayan & Niv, 2008; O'Doherty et al., 2017). A fundamental
50 pathway supporting reinforcement learning is the dopaminergic input from the ventral tegmental
51 area (VTA) to the ventral striatum, and specifically the nucleus accumbens, which serves as a
52 teaching signal and plays a critical role in motivation and value-based decision-making (Barto,
53 1995; Glimcher, 2011; Montague et al., 1996; O'Doherty, 2004; Salamone & Correa, 2012;
54 Schultz et al., 1997). Yet this mesolimbic circuitry does not operate in isolation. Converging
55 evidence shows that other brain regions, including the prefrontal cortex, hippocampus, amygdala,
56 and potentially even the periaqueductal gray (PAG), shape how reinforcement-learning related
57 signals are generated, interpreted, and used (Ballard et al., 2019; Lee et al., 2012; Muller et al.,
58 2024; Paton et al., 2006; Roy et al., 2014). Fully characterizing the circuitry involved in these
59 behaviors therefore requires whole-brain approaches that can capture how canonical reward
60 pathways interact with systems traditionally studied in other contexts (e.g., in aversion and
61 defense).

62 Considerable understanding of brain-wide circuits contributing to reinforcement learning
63 processes has come from human fMRI studies, where computational modeling of trial-by-trial
64 neural signals has proven invaluable in dissecting the mechanisms by which brain regions encode
65 learning, predict behavior, and interact within functional networks (Daw et al., 2006; Niv, 2009;

66 O'Doherty et al., 2003, 2007). Yet, despite their insight, human studies are inherently limited in
67 their ability to establish causality, perform precise circuit manipulations, or achieve the level of
68 experimental control possible in rodents. Extending this whole-brain imaging approach to
69 behaving rodents therefore offers a unique opportunity to link systems-level network dynamics
70 with cellular and molecular mechanisms of learning, bridging a critical translational gap. Until
71 recently, most rodent imaging studies focused on resting-state fMRI to map functional connectivity
72 across the mouse brain, further linking it with behavior (Bergmann et al., 2020; Grandjean et al.,
73 2017; Lichtman et al., 2021; Liska et al., 2018). Recent advances by us and others, including the
74 development of awake imaging setups and rodent-specific hemodynamic models (Bergmann et al.,
75 2025; Desai et al., 2011; Fonseca et al., 2020; Han et al., 2019; Kahn et al., 2011; Lawen et al.,
76 2025; Winkelmeier et al., 2022), now enable the implementation of reliable task-based fMRI.
77 These developments open the door to probing not only canonical reward regions but also
78 underappreciated contributors, offering a systems-level perspective that is critical for
79 understanding the distributed computations underlying reinforcement learning and behavioral
80 flexibility, which can then be further investigated and manipulated using invasive tools available
81 in rodents.

82 Here, we used task-based fMRI of behaving mice to characterize the neural processes involved in
83 a value-based decision-making task. We developed a non-invasive MR-compatible platform
84 enabling high-resolution behavioral monitoring of head-fixed mice, which facilitated a
85 longitudinal study of mice engaged in a go/no-go odor discrimination task followed by rule
86 reversal, allowing us to investigate the distinct neural mechanisms engaged in initial acquisition
87 versus reversal learning. We analyzed fMRI data using subject-specific trial-by-trial parameters
88 derived from a reinforcement-learning model to better capture the temporal dynamics of learning,
89 thereby improving predictive power and accounting for the small sample sizes feasible in rodent
90 studies. This approach revealed the involvement of different brain regions in acquisition and
91 reversal learning, including areas well-established as involved in goal-directed behavior like the
92 nucleus accumbens, the dorsomedial striatum and the orbitofrontal cortex, but also, surprisingly,
93 the PAG, which we found to be involved specifically in the reversal phase. Further examination
94 showed that the PAG exhibits differential activity depending on correct behavioral outcome, is
95 active during inhibition of lick responses to a “no-go” odor and is inactive during lick responses
96 to a “go” odor.

97 **Materials and Methods**

98 **Ethics**

99 All animal experiments were conducted in accordance with the United States Public Health
100 Service's Policy on Humane Care and Use of Laboratory Animals and approved by the
101 Institutional Animal Care and Use Committee of the Technion—Israel Institute of Technology.

102 **Animals and housing conditions**

103 Twelve C57Bl/6J male mice (2–3 months old) were housed in groups of 2–5 animals per cage in
104 a reversed 12-h light–dark cycle with food and water available *ad libitum* prior to water restriction.
105 The housing room was maintained at 23 ± 2 °C. All experiments were conducted during the dark
106 phase.

107 **Head-post surgery**

108 To minimize head movement during scanning, mice were implanted with MRI-compatible head
109 posts, as previously described (Bergmann et al., 2025; Lichtman et al., 2021). Briefly, mice were
110 anesthetized with isoflurane (1.5–2.5%), the scalp and periosteum were removed from above the
111 surface of the skull, and a head post was attached to the skull using dental cement (C&B Metabond,
112 Parkell, Brentwood, NY, United States). Mice received a subcutaneous injection containing broad-
113 spectrum antibiotics (Cefalexin) and analgesia (Buprenorphine) during the surgery and daily for
114 at least 3 days after the surgery, and were maintained in their home cage for a postoperative
115 recovery period of 1 week.

116 **MR-compatible behavioral setup**

117 Experiments were conducted using an MRI-compatible behavioral platform designed to enable
118 precise odor delivery, water reward control, and simultaneous recording of sniffing and licking
119 behavior. The system included a custom head-fixation cradle, an air-dilution olfactometer for rapid
120 odor presentation, the design of which has been previously described in detail (Arneodo et al.,
121 2018; Shusterman et al., 2011), a non-invasive sniff sensor, a pressure-based lick detector, and a
122 calibrated water-delivery mechanism. To adapt traditional olfactory setups for the MRI
123 environment, the olfactometer was positioned outside the scanner bore with its output routed
124 through a final solenoid valve located near the head-fixation apparatus. This configuration
125 minimized magnetic interference while maintaining fast odor onset kinetics (steady-state

126 concentration reached within ~100 ms). Sniffing was measured through a modified odor port
127 connected to a miniature pressure transducer via short capillary tubing, providing stable, artifact-
128 free respiration signals. Lick detection was achieved using a pressure-based MRI-compatible
129 transducer, and water rewards (~2.5 μ l per drop) were delivered through a solenoid-gated line
130 controlled by an Arduino microcontroller. The olfactometer delivered a continuous flow of clean
131 air (992 ml/min) that switched seamlessly to an odorized stream during stimulus presentation,
132 preventing mechanical cues. Odorized air was generated by diverting nitrogen through odorant
133 vials approximately 1 s before valve opening and mixing it into the main airflow to achieve a
134 tenfold dilution. The final odor pulse lasted 1 s, after which clean air resumed. All flow paths were
135 constructed from Teflon to prevent odor contamination. Odorant concentration profiles were
136 verified using a photoionization detector (PID, Aurora Scientific, model 200B). All behavioral and
137 control signals including sniffing, licks, valve triggers, and reward timing were synchronized and
138 recorded via MATLAB-based scripts. This high-resolution monitoring approach provided precise
139 temporal alignment between behavioral events and fMRI acquisition, ensuring accurate
140 characterization of sensory, motor, and reward-related processes. For a more detailed description
141 of the experimental setup, see Bergmann et al. (2025).

142 **Flexible discrimination learning**

143 Mice underwent an instrumental go/no-go odor discrimination task followed by a rule reversal in
144 which odor contingencies were switched.

145 Following postoperative recovery, mice were single-housed and placed on a 10-day water
146 restriction schedule, during which the amount of water was gradually reduced from 5 ml to 1 ml
147 (1 ml per day). Water restriction was maintained throughout the experiment, including weekends.
148 During pretraining (3–7 sessions), mice were first habituated to the setup to ensure acclimation to
149 the scanner environment and were trained during mock scanning to lick a spout to obtain water
150 rewards, with increasing inter-reward intervals (3–7 s), to shape stable licking behavior. Once mice
151 consistently licked to consume water in the MRI setup and exhibited stable sniffing signals, they
152 were scanned while performing the go/no-go task. All animals learned the task (i.e., there was no
153 attrition).

154 The task consisted of multiple six-minute blocks, with 50 trials (25 per odor) per block, in which
155 two neutral odorants (Pinene and Ethyl-Acetate) were presented pseudo-randomly. Each odor

156 signaled either a rewarded (“go”) or unrewarded (“no-go”) condition. On each trial (2.5 s), an odor
157 was presented for 1 s, and the animal was given a 2 s response window from odor onset. Inter-trial
158 interval ranged from 5–12.5 s. Given a correct lick response to the go odor, the reward was
159 delivered immediately. Lick responses to the no-go odor were not explicitly punished (only
160 implicitly as water was not provided for these incorrect responses), and no lick responses were not
161 rewarded.

162 During *Acquisition*, mice ($n = 12$) underwent 8–16 sessions (**Supplementary Table 1**) in which
163 they learned to produce a lick response to the go odor and to withhold licking to the no-go odor.
164 The first *Acquisition* session included 10–15 min of lick training during scanner calibration,
165 allowing acquisition of fMRI data of the first odor presentation. In subsequent sessions, 1–2 blocks
166 of the task were performed before fMRI data acquisition to allow for scanner calibration. These
167 blocks were included in the behavioral data presented in **Figure 1** but were not included in the
168 fMRI analyses in subsequent figures.

169 Next, a subset of this cohort ($n = 6$) underwent a *Reversal* phase for 5–6 sessions (**Supplementary**
170 **Table 1**), during which they learned to lick in response to the presentation of the previously
171 acquired no-go odor and to suppress the previously acquired lick response to the go odor. The
172 *Reversal* group was randomly selected and showed learning performance similar to that of the
173 remaining *Acquisition*-only mice (see results section). In the first *Reversal* session, mice performed
174 1–2 blocks of the original odor discrimination test during scanner calibration to ensure fMRI data
175 acquisition for the first *Reversal* block. Subsequent sessions were performed using only the
176 *Reversal* task, for which the first 1–2 blocks started before the fMRI data were acquired and
177 therefore contributed to the behavioral data presented in **Figure 1**, but not to fMRI analyses in
178 subsequent figures. Odor identity (go vs. no-go in the *Acquisition* phase) was counterbalanced
179 across animals.

180 **Reinforcement learning model**

181 In order to model reinforcement learning we used a previously described (Nicholas et al., 2024)
182 variant of a model-free Q-learning algorithm (Rescorla, 1972; Sutton & Barto, 1998). The model
183 assumes a stored value, $Q(\text{odor}, \text{action})$, for choosing an action of licking or not licking in response
184 to a given odor. After each outcome, r_t , the Q value for the chosen action was updated according
185 to:

186
$$Q(\text{odor}, \text{action})_{t+1} = Q(\text{odor}, \text{action})_t + \alpha(r_t - Q(\text{odor}, \text{action})_t)$$

187 where the degree of updating was controlled by the learning rate α (**Supplementary Fig.1A**),
188 which was a free parameter that ranges between 0 and 1. Q values of unchosen actions and other
189 odors remained unchanged.

190 The model learned separate Q values for each odor (go, no-go, and control (nitrogen flow without
191 odorant)) and action combination, such that six Q values were estimated in total, three for licking
192 (*lick*) and three for not licking (*nolick*). The two Q values corresponding to the present stimulus,
193 o , were used to compute a decision variable of the subject's response on each trial:

194
$$\Delta V_t = Q(o, \text{lick})_t - Q(o, \text{nolick})_t$$

195 The probability of licking was modeled using a logistic function:

196
$$P(\text{lick}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \Delta V_t)}}$$

197 where β_0 is an intercept parameter that accounts for the bias towards licking and β_1 is an inverse
198 temperature parameter that estimates the sensitivity to the learned values of actions related to the
199 presented odor (**Supplementary Fig.1B**).

200 **Model Fitting**

201 We estimated model parameters for each animal using hierarchical Bayesian inference in order to
202 allow group-level priors to regularize subject-level estimates. This approach to fitting
203 reinforcement learning models improves parameter identifiability and predictive accuracy (van
204 Geen & Gerraty, 2021) and has been used to fit similar Q-learning models (Nicholas et al., 2022).
205 We first split the subjects into two groups: one group that underwent only acquisition ($n = 6$) and
206 another that underwent a rule reversal following acquisition ($n = 6$). This splitting was performed
207 because we reasoned that pooling data together from all animals would artificially inflate the
208 learning rate of animals in the acquisition-only group. This is because animals in the reversal group
209 experienced more trials where new learning was required, effectively doubling the “volatility” of
210 this environment (Behrens et al., 2007).

211 To fit the model, the joint posterior was approximated using No-U-Turn Sampling (Hoffman &
212 Gelman, 2014) as implemented in Stan (Carpenter et al., 2017). Four chains with 2000 samples

213 (1000 discarded as burn-in) were run for a total of 4000 posterior samples per model. Chain
214 convergence was determined by ensuring that the Gelman-Rubin statistic, \hat{R} , was close to 1.

215 The model's likelihood function can be written as:

216 $c_{s,t} \sim Bernoulli(\theta_{s,t})$

217 where $c_{s,t}$ is 1 if subject s chose to lick on trial t and 0 if the subject chose not to lick, and $\theta_{s,t}$ is
218 the estimated probability of this subject licking on this same trial. Following the recommendations
219 of (Gelman & Hill, 2006), each subject's intercept and inverse temperature β_s were drawn from a
220 multivariate normal distribution with mean vector μ_β and covariance matrix Σ_β :

221 $\beta_s \sim MultivariateNormal(\mu_\beta, \Sigma_\beta)$

222 where Σ_β was decomposed into a vector of coefficient scales τ_β and a correlation matrix Ω_β via:

223 $\Sigma_\beta = diag(\tau_\beta) \times \Omega_\beta \times diag(\tau_\beta)$

224 We set weakly-informative hyperpriors on the group-level hyperparameters μ_β , Ω_β and τ_β :

225 $\mu_\beta \sim \mathcal{N}(0, 5)$

226 $\tau_\beta \sim Cauchy^+(0, 2.5)$

227 $\Omega_\beta \sim LKJCorr(2)$

228 Each subject's learning rate parameters were also fit hierarchically with the following prior and
229 hyperpriors ($a1, a2$):

230
$$\begin{aligned} \alpha_s &\sim Beta(a1, a2) \\ a1 &\sim \mathcal{N}(0, 5) \\ a2 &\sim \mathcal{N}(0, 5) \end{aligned}$$

231 A description for why these prior and hyperpriors were chosen, as well as further details about the
232 parameterization, can be found in Nicholas et al. (2022).

233 **Image acquisition and preprocessing**

234 MRI data were acquired as previously described (Bergmann et al., 2025). In brief, scans were
235 acquired with a 9.4 Tesla MRI (Bruker BioSpin, Ettlingen, Germany) using a quadrature 86 mm

236 transmit-only coil (Bruker BioSpin) and a 20 mm loop receive-only coil (Bruker BioSpin), and
237 were reconstructed using ParaVision 5.1 (Bruker). Mice underwent multiple sessions of event-
238 related fMRI (6–14 sessions during *Acquisition*, 5–6 sessions during *Reversal*), with each session
239 containing multiple runs (2–12 runs per session), i.e., task blocks (see Flexible discrimination
240 learning section). The rapid-presentation event-related design was generated using Optseq2
241 (Greve, 2002).

242 Mice were anesthetized for a short period of time (5% isoflurane) at the start of each session to
243 allow for positioning them in the scanner. For each session, a relaxation enhancement (RARE) T2-
244 weighted structural imaging (50 coronal slices, TR/TE 2300/8.5 ms, RARE factor = 4, flip
245 angle = 180°, 200 × 200 × 300 μm^3 , field of view of 19.2 × 19.2 mm², matrix size of 96 × 96) was
246 first acquired while the mice performed the odor discrimination task. Then, blood oxygenation-
247 level dependent (BOLD) contrast run scans were acquired for six minutes using spin echo-echo
248 planar imaging (SE-EPI) sequence (TR/TE 2500/13.022 ms, flip angle = 90°, 50 coronal slices,
249 voxel size 200 × 200 × 300 μm^3 , field of view of 14.4 × 9.6 mm², matrix size of 72 × 48).
250 Preprocessing of raw data included removal of the first two volumes for T1-equilibration effects,
251 compensation for slice-dependent time shifts, rigid body correction for head motion, semi-
252 automatic linear registration (FSL FLIRT) to the Allen Mouse Brain Common Coordinate
253 Framework version 3 (CCFv3, Kuan et al., 2015; Lein et al., 2007) that included a manual
254 correction step for each session to validate proper alignment, and spatial smoothing with a full
255 width at half maximum (FWHM) of 500 μm .

256 **fMRI data analysis**

257 fMRI data were analyzed using SPM12 (Wellcome Department of Cognitive Neurology, London,
258 UK) and SnPM13 (<http://nisox.org/Software/SnPM13/>). The design matrices of all general linear
259 models (GLM) computed in this study included the following nuisance regressors: global signal,
260 ventricles signal, six motion parameters and their first-order derivatives, run constant for all runs
261 excluding the last run, and events with frame displacement larger than the voxel size (200 μm).

262 **Whole-brain analysis**

263 In order to detect brain regions involved in tracking the value of an action (lick/no-lick) in a given
264 state, we performed a whole-brain analysis using the decision variable (see Reinforcement-

265 learning model section) as a covariate. For each animal, all sessions of the relevant experimental
266 stage (Acquisition/Reversal) were combined to generate a single GLM in which events were
267 defined as stimulus onset with a duration of zero. In addition, a decision variable regressor was
268 created as a covariate by convolving the decision variable values with the mouse hemodynamic
269 response function (HRF) previously modeled by our group (Bergmann et al., 2025). Due to the
270 relatively slow TR (2.5 s) and the short dynamics of the mouse HRF, it was not possible to
271 disentangle the stimulus, choice and feedback, and therefore, events were defined as single whole
272 trials. A linear contrast of regressor coefficients was computed at the single-subject level for the
273 decision variable regressor and was further used for a second, group-level analysis using a one-
274 sample *t*-test. All group-level statistical maps were corrected for multiple comparisons using
275 family-wise error correction. For the group-level parametric analysis ($n = 12$; **Figure 2**), the voxel
276 extension was set to 5 voxels. For non-parametric statistical maps ($n = 6$; **Figure 3**), a permutation
277 test was performed using the sign-flip approach in which 64 permutations, the equivalent of
278 $2^{n_{\text{subject}}}$, were computed. To allow for cluster-level inference, we defined the variance smoothing
279 to be the same FWHM that was applied to the data as instructed by SnPM13 manual. The cluster-
280 defining threshold was set to *t* statistic of 6 ($\sim p < 0.001$, $\text{df} = 5$, prior to cluster-level inference),
281 resulting in a critical STCS (suprathreshold cluster size) of 3 voxels.

282 Brain regions identified in the whole-brain analysis but located near fiber tracts, MRI artifacts, or
283 close to the brain's boundaries were excluded from the results section.

284 **Region of interest (ROI) analysis**

285 Following the whole-brain findings of brain regions that are correlated to the Q-learning
286 computation, we wanted to further assess the contribution of each of these regions to specific
287 cognitive processes. Thus, for each experimental stage (*Acquisition* and *Reversal*), we defined each
288 trial as an event based on the subject's response (Hit, False Alarm [FA], Correct Rejection [CR],
289 and Miss) and generated a GLM per subject for each session separately with regressors
290 corresponding to the different event types. We created specific ROI masks for regions identified
291 based on the overlap between contiguous clusters of voxels in the statistical parametric/non-
292 parametric maps and the Allen Mouse Brain Connectivity (AMBC) atlas (**Supplementary Fig. 3**).
293 We used the MarsBaR toolbox (Brett et al., 2002) to extract finite impulse responses, plotting the
294 hemodynamic response without assumptions on its response characteristics, with the onsets shifted

295 by 5 s to allow to observe the pre-trial baseline and the full evolution of the response. We note that
296 while the GLM used to identify the regions and the ROIs used in the ROI analysis are not
297 independent, the inferences derived from this analysis are intended to characterize how Hits, FAs,
298 CRs and Misses contribute to the response first identified in the Q-learning GLM which modeled
299 the go and no-go conditions with the estimated decision variable as a parametric regressor. The
300 ROI analyses therefore serve to quantify the fMRI response at both the individual-animal level
301 and across these conditions.

302 **Statistical analyses**

303 Behavioral data were analyzed using MATLAB R2023 (The Mathworks, Natick, MA, USA),
304 except for analysis of variance (ANOVA) which was performed using jamovi 2.3. For all repeated
305 measures ANOVA tests, time was defined as a within-subject factor and the parametric tests were
306 corrected for sphericity violation using the Huynh-Feldt method. For fMRI data, repeated
307 measures ANOVA was performed in R (R Core Team, 2024) using RStudio (RStudio Team,
308 2020), with sphericity violation corrected using the Greenhouse-Geisser method.

309 **Results**

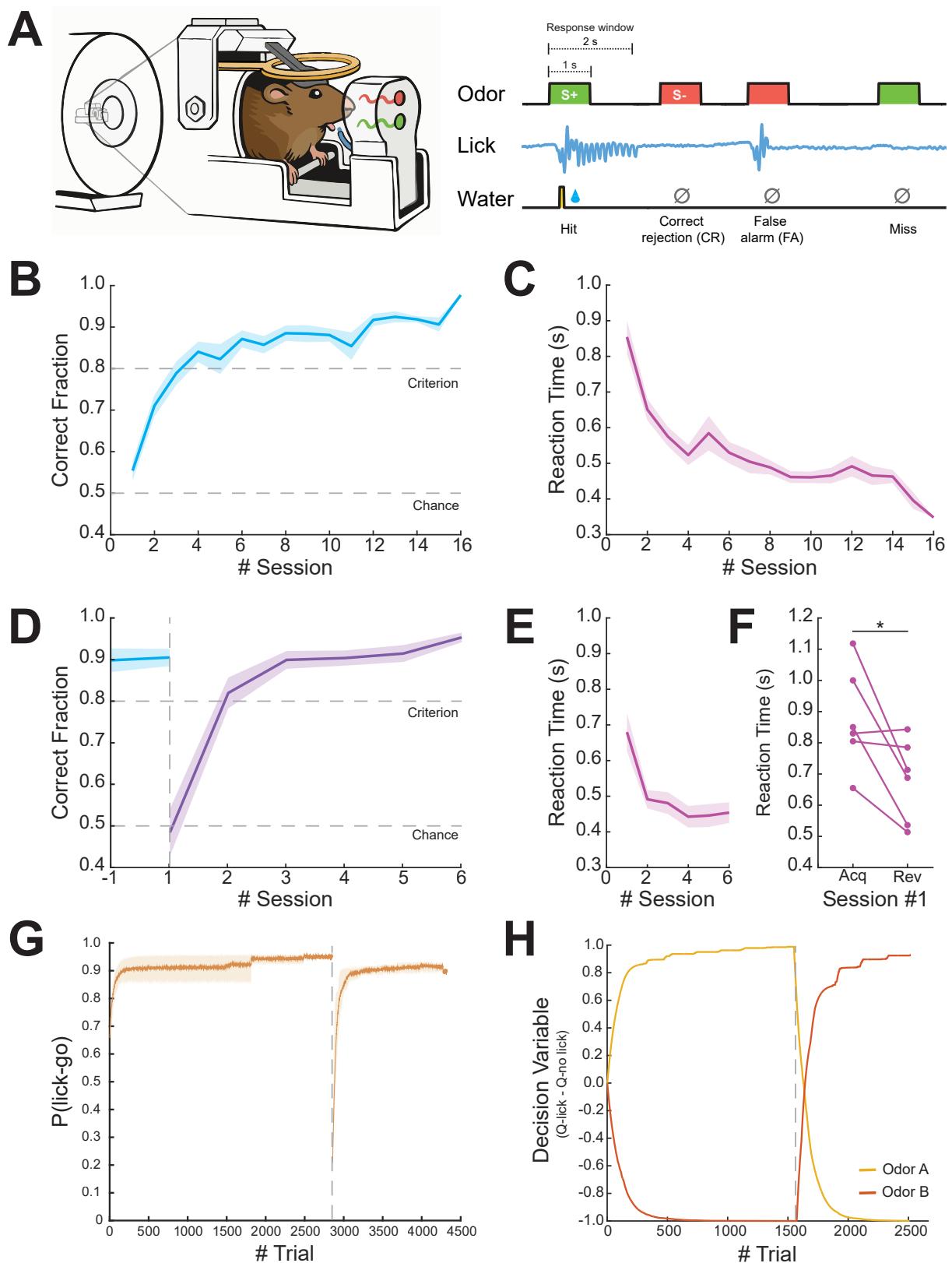
310 We utilized an experimental setup that allows for the delivery of odors into the scanner alongside
311 a closed-loop system for lick detection and water delivery, allowing us to perform behavioral
312 experiments with high precision in head-fixed mice (for a full description of the setup, see
313 Bergmann et al., 2025). In this study, mice ($n = 12$) learned to perform an instrumental odor
314 discrimination task while undergoing fMRI scanning (**Figure 1A**), with a subset of mice ($n = 6$)
315 undergoing a rule reversal phase during which the action-outcome contingencies were switched.

316 ***Mice learn action-outcome associations and subsequent rule reversal in a go/no-go odor***
317 ***discrimination task***

318 During task *Acquisition*, mice learned to discriminate between the rewarded stimulus (S+) and the
319 unrewarded stimulus (S-) and reached a performance criterion of >80% correct responses by the
320 fourth day (**Figure 1B**). A repeated-measures analysis of variance (rm-ANOVA) revealed a
321 significant effect of Time ($F(5,11) = 25.2, p < 0.001, \eta^2 = 0.585$) as mice gradually learned the
322 action-outcome associations for both stimuli. Evaluation of the reaction time from odor delivery
323 to a lick response showed a decrease throughout sessions as animals became more proficient in

324 the task (**Figure 1C**). Next, after the mice reached the criterion and maintained it, task
325 contingencies were switched in the *Reversal* stage. Mice rapidly learned the new contingencies
326 (**Figure 1D**), reaching a performance criterion on average within two sessions (Friedman rm-
327 ANOVA; $\chi^2 (4,6) = 16.8, p < 0.01$). The ability to quickly adapt to the switch in contingencies can
328 be further observed by a decrease in reaction time throughout sessions during the *Reversal* phase
329 (**Figure 1E**). Overall, mice presented goal-directed behavior during the experiment as indicated
330 by the gradual lick responses to rewarded stimuli only (without using punishment for incorrect
331 responses), as can be observed by a significant difference in reaction time for the first session of
332 reversal relative to acquisition (**Figure 1F**; Wilcoxon Signed-rank test; $W = 20, p < 0.05$).
333 Importantly, when evaluating for differences between the sub-group of mice that underwent only
334 the acquisition phase and that who underwent a following reversal phase, we found no significant
335 differences in learning the initial action-outcome association (two-way rm-ANOVA, $F(1,11) =$
336 $0.231, p = 0.947, \eta^2 = 0.006$).

337 Next, we used a reinforcement-learning model in order to parameterize the value of an action to a
338 given odor. Specifically, we used a model-free Q-learning algorithm to allow for trial-by-trial
339 estimation of action values (Q) of each odor to assess the process of choosing an action based on
340 prior experiences. As estimated by the model, the probability of choosing to lick for the go odor
341 accurately captures the experimental data (**Figure 1G**), showing a sharp decrease in probability at
342 the point of reversal with a steep recovery. To illustrate Q-learning estimation, we plotted the
343 decision variable values for one of the mice that participated in both *Acquisition* and *Reversal*
344 (**Figure 1H**), demonstrating that the majority of learning occurred within approximately 500 trials
345 in both stages (the equivalent of approximately two sessions), matching the time required to reach
346 criterion for this animal. Similar estimation was observed for the other mice (not shown).

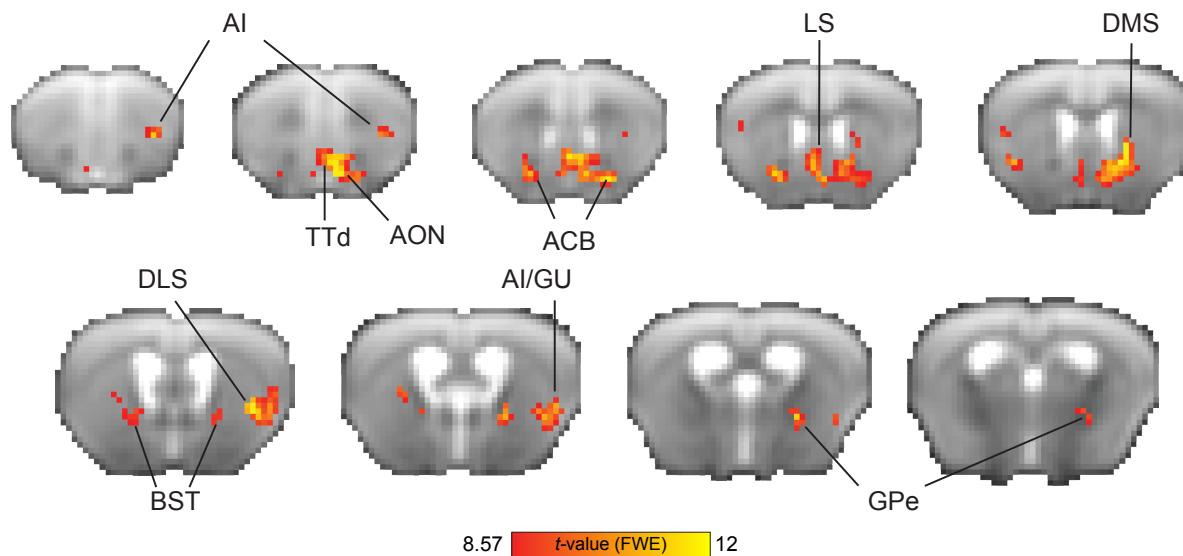


348 **Figure 1. Mice display flexible discrimination learning in a Go/No-go task in an experimental setup**
349 **allowing for task-based fMRI.** **(A)** Illustration of behavioral setup and task design. Odors were presented
350 pseudo-randomly for 1 second with a response window lasting 2 seconds from odor onset. **(B)** Learning
351 curve showing the averaged ratio of correct responses (Hit and Correct Rejection events) during task
352 acquisition ($n = 12$). **(C)** Averaged reaction time of lick responses to Hit trials as a function of session. **(D)**
353 Learning curve showing averaged ratio of correct responses ($n = 6$). Blue line indicates the last acquisition
354 session prior to reversal. Purple line indicates the reversal phase. **(E)** Averaged reaction time of lick
355 responses to Hit trials as a function of sessions during the reversal phase. **(F)** Pairwise comparison of the
356 averaged reaction time for the first session in acquisition vs. reversal. **(G)** Averaged probability of choosing
357 to lick in response to 'go' trials ($n = 6$). The gray dashed line indicates the rule reversal onset (95% $CI_{\text{acquisition}}$
358 = [0.580, 0.966], 95% $CI_{\text{reversal}} = [0.157, 0.942]$). **(H)** Decision variable ($Q_{\text{lick}} - Q_{\text{no-lick}}$) parameter of a
359 representative animal as computed by the Q-learning model throughout the experiment. The yellow line
360 represents odor A and the orange line represents odor B. The gray dashed line indicates the time of rule
361 reversal. Data are shown as mean \pm SEM (B, C, D and E). * $p < 0.05$.

362 ***Brain responses indicative of value-based decision-making in the mouse brain***

363 We sought to characterize the neural responses that are involved in reinforcement learning during
364 flexible discrimination learning. We used the Q-learning algorithm in order to detect brain regions
365 that take part in computing the value of choosing an action (lick/no-lick) to a given odor stimulus.
366 Regions that track the decision variable estimated by the model, therefore, reflect the dynamic
367 nature of learning at the individual-animal level. Specifically, in this task, regions identified using
368 the decision variable are implicated in learning odor-action associations: one odor signals that
369 licking will result in water delivery, while the other odor signals that licking will not yield reward.
370 Though incorrect responses are not explicitly punished, animals learn to avoid unrewarded actions.
371 To evaluate responses in the task acquisition stage, we used high-field fMRI (9.4T) to measure
372 distributed brain activity from the naïve state to task proficiency. We entered the decision variable
373 of each animal ($n = 12$) as a parametric modulator in first-level GLM analysis, then conducted a
374 second-level group analysis, calculating a statistical parametric map of regions that correlate with
375 the decision variable (**Figure 2**). We observed responses in the basal ganglia (nucleus accumbens
376 [ACB]), dorsomedial striatum [DMS], dorsolateral striatum [DLS] and globus pallidus externus
377 [GPe]), regions in the insular cortex (agranular insular area [AI]) related to rewards and learning
378 the cue-reward association, regions related to odor processing (tenia tecta [TTd] and anterior
379 olfactory nuclei [AON]), regions related to avoidance and stress regulation (bed nucleus of the
380 stria terminalis [BST]), and regions related water consumption (posterior AI/gustatory cortex
381 [GU]). The most prominent responses (numerically) were observed in the striatum (ACB and

382 DMS). Overall, this measure reflects responses in brain regions previously implicated in value-
383 based decision-making.

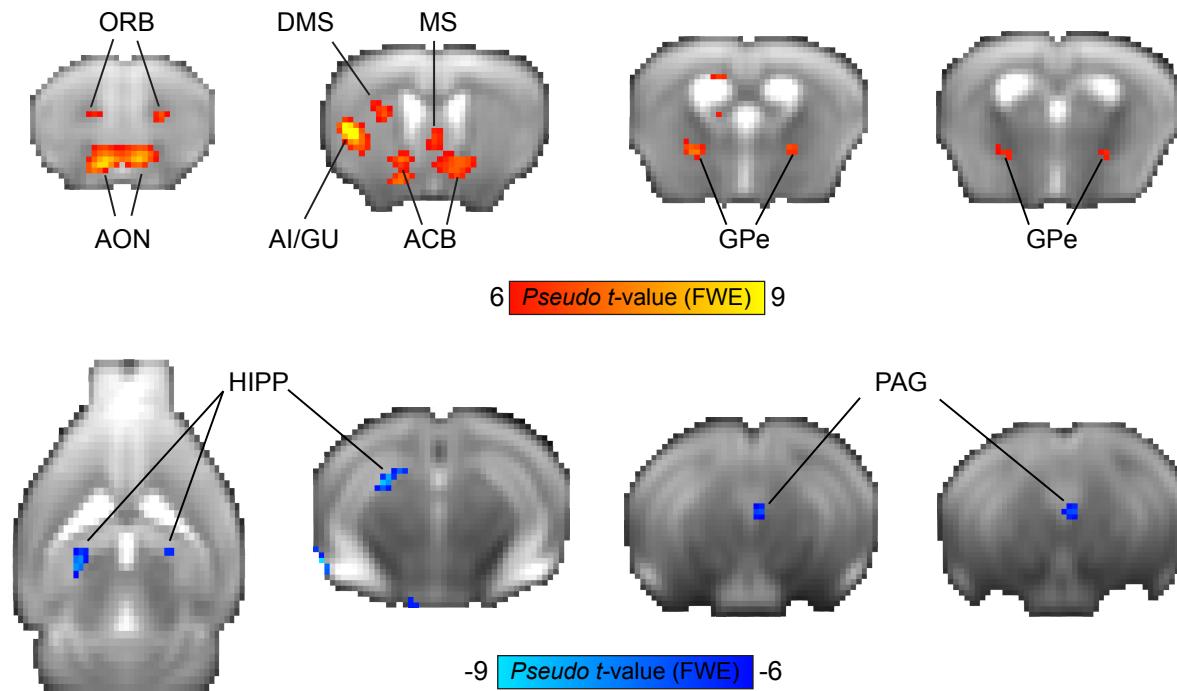


384

385 **Figure 2. Neural substrates of Q-learning signals during go/no-go task acquisition.** Group-level
386 parametric one-sample t statistic maps showing BOLD response correlates of the decision variable values
387 from the Q-learning model ($n = 12$ mice). The red color spectrum indicates areas with positive correlations
388 to decision variable values, while blue colors indicate negative correlations. Maps are presented on the
389 averaged raw fMRI data (spin-echo echo planar imaging) and annotated based on the Allen Mouse Brain
390 Atlas; $p < 0.05$, corrected for multiple comparisons using family-wise error correction, voxel extension of
391 5. ACB, nucleus accumbens; AI, agranular insular area; AON, anterior olfactory nuclei; BST, bed nucleus
392 of the stria terminalis; GU, gustatory cortex; DLS, dorsolateral striatum; DMS, dorsomedial striatum; GPe,
393 globus pallidus externus; TT, tenia tecta; d, dorsal; v, ventral.

394 Next, we sought to characterize the neural responses during rule reversal. Reversal learning
395 paradigms evaluate behavioral flexibility by switching the contingencies between stimuli and their
396 outcomes, requiring subjects to change their learned responses when they encounter no reward for
397 a previously rewarded response, as well as the ability to beneficially respond to a stimulus that
398 was previously not reinforced. Using this experimental manipulation, we wanted to identify brain
399 regions that are active during this cognitive process. Given that only a subset of mice underwent
400 rule reversal, we used a non-parametric approach for whole-brain analysis and ran a permutation
401 test. A GLM modeling the decision variable at the reversal stage of each animal ($n = 6$) was entered
402 into a second-level group one-sample t -test, resulting in a statistical non-parametric map (**Figure**
403 **3**) of regions that were preferentially positively or negatively correlated with the value of licking
404 or not licking, respectively. This map reveals the involvement of several regions that correlate with

405 the decision variable values, showing a positive correlation in frontal and insular cortices
406 (orbitofrontal [ORB] and AI/GU cortices), striatum (ACB and DMS), pallidum (medial septum
407 [MS] and GPe) and olfactory processing regions (AON), and negative correlation in the dorsal
408 hippocampus (HIPP) and ventral PAG.



409
410 **Figure 3. Neural substrates of Q-learning signals during reversal learning.** Group-level non-parametric
411 maps showing BOLD response correlates of the decision variable values from the Q-learning model ($n = 6$
412 mice). The red color spectrum indicates areas with positive correlations to the decision variable values,
413 while blue colors indicate negative correlations. Maps are presented on an average raw fMRI data (spin-
414 echo echo planar imaging) and annotated based on the Allen Mouse Brain Atlas; $p < 0.05$, corrected for
415 multiple comparisons using family-wise error correction, voxel extension of 3. ACB, nucleus accumbens;
416 AI, agranular insular area; AON, anterior olfactory nuclei; DMS, dorsomedial striatum; GPe, globus
417 pallidus externus; GU, gustatory cortex; HIPP, hippocampus; MS, medial septum; ORB, orbitofrontal
418 cortex; PAG, periaqueductal gray.

419 ***Activation of PAG correlates with beneficial behavioral responses in reversal learning only***

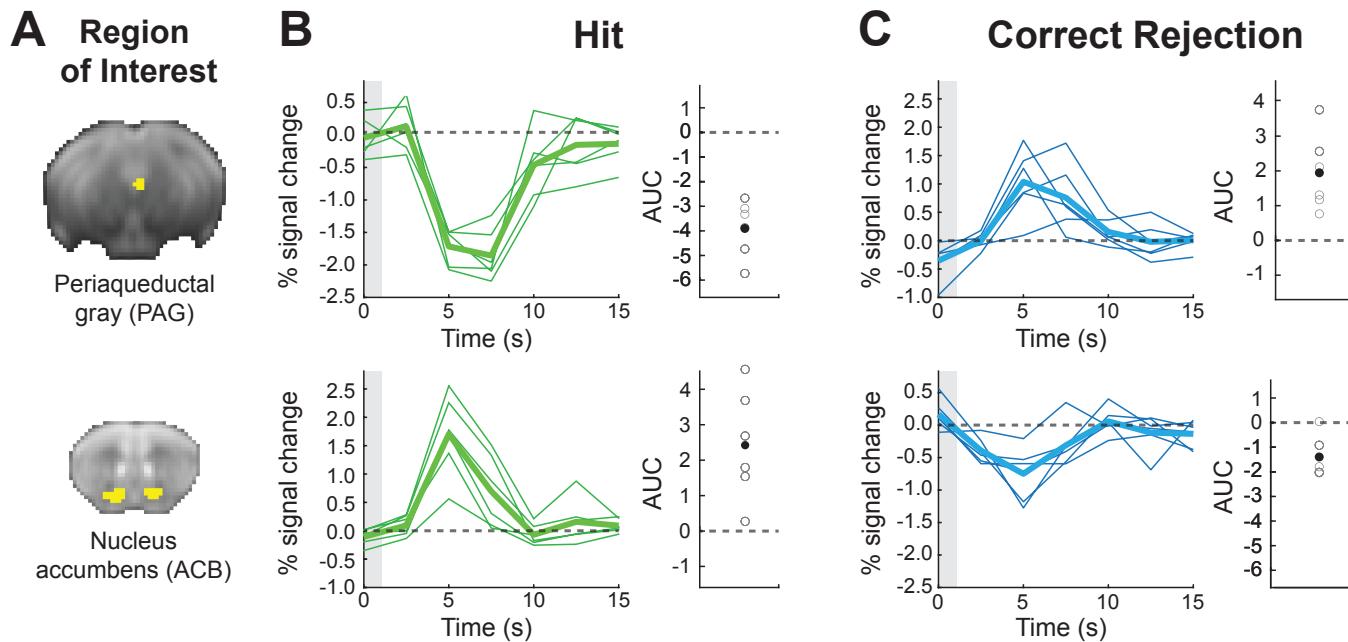
420 Given recent findings suggesting that PAG represents an aversive prediction error, and the lack of
421 evidence linking it to reversal learning and action value, especially under appetitive conditions,
422 we next sought to characterize its responses in contrast to those in the ACB, a well-established
423 region for prediction error computation. We therefore examined the PAG and ACB contributions
424 to the different cognitive components of discrimination learning using an ROI analysis, and looked

425 at finite impulse responses (FIR) for conditions differentiated by their behavioral responses,
426 whether correct or incorrect, and their outcomes (Hit, Correct Rejection, False Alarm, and Miss;
427 see **Supplementary Fig. 2** for behavioral performance).

428 We estimated FIR-based BOLD response time courses from the PAG and ACB and computed the
429 mean area under the curve (AUC) across time points for each session to quantify overall response
430 magnitude. Focusing on the PAG, a two-way repeated-measure ANOVA, with Condition (Hit,
431 Correct Rejection, False Alarm, and Miss) and Session as within-subject factors, revealed a
432 significant main effect of Condition ($F(1.77, 8.87) = 15.17, p < 0.01$, generalized $\eta^2 = 0.34$),
433 indicating that AUC varied across behavioral outcomes, distinguishing correct from incorrect
434 responses, and as can be seen in the analyses below, was driven mainly by positive responses to
435 Correct Rejection and negative to Hit. In contrast, neither the main effect of Session nor the
436 Session \times Condition interaction was significant, suggesting that overall effects were stable across
437 sessions, with learning occurring in the first session, consistent with the animals' behavioral
438 outcomes. Analysis of AUC values from the ACB showed a significant main effect of Condition
439 ($F(1.66, 8.30) = 20.61, p < .001$, generalized $\eta^2 = 0.55$) and a significant interaction of Session
440 \times Condition ($F(12, 60) = 2.20, p = .023$, generalized $\eta^2 = 0.19$), with no significant effect of
441 Session.

442 Next, we compared responses between the PAG and ACB. Given that as the animal learns the
443 decision variable stabilizes and is maximally different between correct licks for the go odor (Hit)
444 and avoidance for the no-go odor (Correct Rejection) (**Figure 1H**), we focused on these two
445 conditions during the last *Reversal* session when mice had already fully learned the rule reversal
446 (**Figure 4**). A two-way repeated-measure ANOVA revealed a significant interaction of
447 ROI \times Condition ($F(1, 5) = 55.13, p < .001$, generalized $\eta^2 = 0.83$), indicating that the behavioral
448 effect of Condition reversed between PAG and ACB. Post hoc pairwise comparison performed
449 within each ROI demonstrated that ACB showed a strong activation to Hit events and inactivation
450 to Correct Rejection (**Figure 4B,C**; bottom row) ($t(5) = 4.19, p = .020$, Holm-adjusted).
451 Conversely, PAG showed inactivation to Hit events and activation to Correct Rejection (**Figure**
452 **4B,C**; top row; $t(5) = 8.95, p = 0.002$). Additional cross-region contrasts confirmed this double
453 dissociation, showing that for Correct Rejection the AUC was higher in PAG than in ACB,
454 whereas for Hit the AUC was higher in ACB than in PAG (both $p \leq 0.025$, Holm-adjusted). Taken

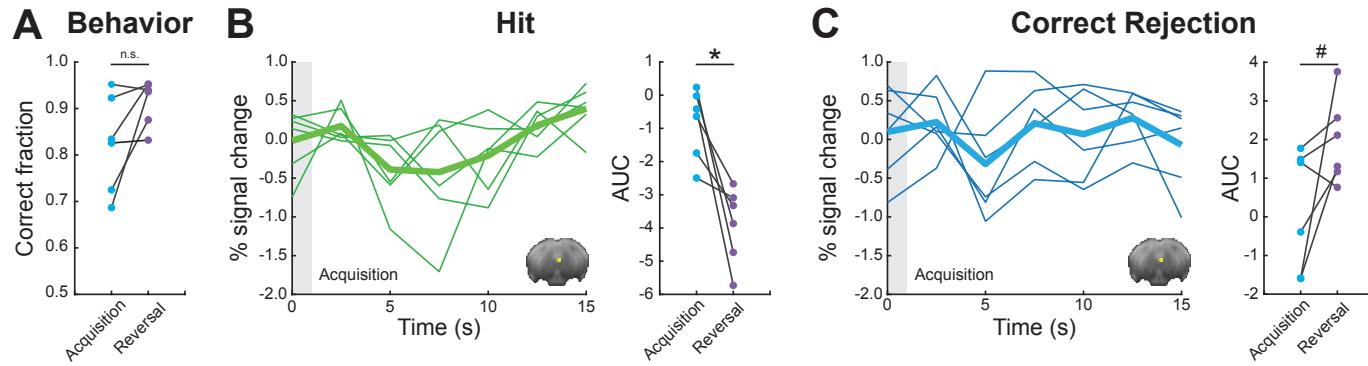
455 together, these findings reveal a crossover interaction in which ACB and PAG exhibit opposite
456 BOLD response modulations for Correct Rejection versus Hit conditions, highlighting distinct
457 functional contributions of the two regions to outcome processing.



458 **Figure 4. Opposing roles of the periaqueductal gray (PAG) and nucleus accumbens (ACB) in**
459 **mediating adaptive behavior in proficient mice.** Region of interest (ROI) analysis showing the time
460 course fMRI BOLD response in PAG (top) and ACB (bottom) for the fifth session in the reversal stage. (A)
461 ROI masks are presented on an average raw fMRI image (spin-echo echo planar imaging). (B) BOLD fMRI
462 Responses to Hit (lick response to go trials; green) and (C) Correct Rejection (no lick to no-go trials; blue)
463 are shown. The thick lines represent the group averaged response and the thin lines show individual
464 animals. The gray boxes at time zero depict the odor stimulus timing (1 s). Group mean area under the
465 curve (AUC) of the fMRI response (filled circles) and individual animals (open circles) demonstrate
466 consistent responses at the group and individual animal levels.

467 Finally, we wanted to examine whether the activity observed in PAG is specific to reversal learning
468 or whether this region contributes to acquisition learning as well (Figure 5). We extracted FIR
469 responses for an *Acquisition* session at a timepoint corresponding to reversal learning, when mice
470 demonstrated comparable performance levels (Figure 5A; Wilcoxon Signed-rank test; $p = 1$, $Z = 0$), and computed the AUC values for the two conditions. Looking at the Hit condition, we found
471 a significant decrease in AUC values for *Acquisition* relative to *Reversal* (Figure 5B; Wilcoxon
472 Signed-rank test; $p = 0.031$, $Z = 21$). Comparison of the Correct Rejection condition revealed a
473 trend (Figure 5C; Wilcoxon Signed-rank test; $p = 0.093$, $Z = 2$), showing overall decrease in AUC
474 values. Further, PAG responses during the *Acquisition* phase were not significantly different than
475

476 baseline in both conditions (Sign test; Hit: $p = 0.218$, sign = 1; Correct Rejection: $p = 1$, sign = 3).
477 Collectively, the results indicate that the subregion in PAG that was found to be important for
478 learning of correct behavioral responses in *Reversal* does not seem to be important for *Acquisition*.



479 **Figure 5. PAG responses do not contribute to adaptive behavior in proficient mice during**
480 **Acquisition. (A)** Pairwise comparison of behavioral performance during *Acquisition* vs. *Reversal* for
481 sessions 4/5. **(B)** FIR responses for Hit condition during *Acquisition* (left). Pairwise comparison of AUC
482 values showing individual animals for *Acquisition* vs. *Reversal* (right). **(C)** FIR responses for Correct
483 Rejection condition during *Acquisition* (left). Pairwise comparison of AUC values showing individual
484 animals for *Acquisition* vs. *Reversal* (right). For FIR responses, the thick lines represent group averages
485 and the thin lines show individual animals. The gray boxes at time zero depict the odor stimulus timing (1
486 s). * $p < 0.05$, # $p < 0.1$, n.s. no significance. Insets show PAG region of interest mask presented on an average
487 raw fMRI image (spin-echo echo planar imaging).

488 **Discussion**

489 Flexible, goal-directed behavior relies on the capacity to adapt action–outcome associations when
490 contingencies change. This process, typically studied using reversal learning paradigms, is thought
491 to depend on corticostriatal circuits and dopaminergic teaching signals, yet it remains unclear
492 whether additional brain regions may also contribute. Whole-brain imaging approaches provide
493 an opportunity to address this question. In this study, we found that the periaqueductal gray (PAG)
494 contributes to cognitive flexibility by supporting the suppression of previously reinforced actions
495 in the absence of explicit punishment, and assessed its contributions relative to the nucleus
496 accumbens. By combining task-based fMRI with reinforcement learning modeling in mice
497 performing an odor discrimination task, we found that acquisition was supported by the nucleus
498 accumbens, whereas reversal learning additionally engaged the PAG. Notably, PAG responses
499 contrasted with those in the nucleus accumbens, exhibiting preferential activation during correct
500 rejection of no-go cues and suppression during correct approach to go cues. Together, these results
501 identify the PAG as a key contributor to reversal learning, expanding current models of the neural
502 mechanisms underlying behavioral flexibility. Moreover, they highlight the strength of whole-
503 brain fMRI in rodents, demonstrating that novel findings can emerge even within a well-
504 established and extensively studied behavioral paradigm.

505 By applying a model-free reinforcement-learning algorithm we were able to capture trial-by-trial
506 dynamics of value updating and link them to fMRI responses. This computational approach was
507 essential for detecting the emergence of PAG activity during reversal, as it allowed us to model
508 how action values evolve across individual trials rather than relying on averaged performance
509 measures. Computational modeling of reinforcement learning has been highly influential in human
510 fMRI studies (Niv, 2009; O'Doherty et al., 2003), and its value has only recently been shown in
511 rodent fMRI as well (Winkelmeier et al., 2022). Our results demonstrate the feasibility and utility
512 of such models in animal neuroimaging, highlighting how model-based analyses can improve
513 sensitivity to dynamic neural processes underlying learning. This methodological advance also
514 paves the way for more direct cross-species comparisons of reinforcement learning circuitry.
515 Beyond the striatum, our whole-brain analyses revealed that acquisition engaged a distributed set
516 of regions, including the agranular insula, gustatory cortex, anterior olfactory nuclei, and bed
517 nucleus of the stria terminalis. These findings are consistent with prior reports that value-based

518 learning recruits not only canonical reward regions but also areas involved in sensory processing,
519 interoception, and stress regulation (FitzGerald et al., 2013; Ge & Balleine, 2022; Hernández-Ortiz
520 et al., 2023; Kogan & Fontanini, 2024; Levinson et al., 2020). The engagement of olfactory and
521 gustatory cortices likely reflects the multimodal nature of the task, while activity in the insula and
522 bed nucleus of the stria terminalis may reflect the integration of reward signals with internal state
523 and arousal. Together, these observations emphasize that flexible discrimination learning emerges
524 from the interaction of distributed brain systems, with the PAG contributing selectively during
525 reversal to bias action suppression once initial associations have been formed.

526 Classically, the PAG has been implicated in defensive behaviors (Bandler & Keay, 1996; Carrive,
527 1993), processing nociceptive signals (Basbaum & Fields, 1984; Behbehani, 1995), and
528 coordinating autonomic responses to threat (Dampney, 1994; Keay & Bandler, 2001). However,
529 there has been emerging evidence linking it to behavioral flexibility and value-based decision-
530 making (Ozawa et al., 2017; Reis et al., 2021; Sukikara et al., 2006; Wright & McDannald, 2019).
531 Recent work has highlighted PAG as a potential relay between brainstem value signals and
532 forebrain decision circuits (Gorka et al., 2023; Roy et al., 2014). Further, PAG neurons were shown
533 to encode both negative and positive prediction errors (Walker et al., 2020; Wright & McDannald,
534 2019), and project to thalamic and cortical areas implicated in strategy updating (Assareh et al.,
535 2016; Faull et al., 2019; Kragel et al., 2019; Krout & Loewy, 2000). Thus, PAG serves as a hub
536 that transforms aversive sensory input into adaptive motor and physiological outputs, thereby
537 guiding rapid survival-related responses. While the majority of previous studies linking PAG to
538 reinforcement learning processes used aversive, pain-related paradigms, our task design allowed
539 for reversal learning to occur in the absence of explicit punishment. Mice adapted their behavior
540 solely through the omission of expected reward, suggesting that PAG activity may contribute to
541 updating value representations when contingencies change, even under neutral conditions. Our
542 results extend the current framework by showing that PAG recruitment can occur in appetitive
543 tasks without negative reinforcement, highlighting its broader role in signaling the need to suppress
544 outdated responses. This observation aligns with a proposal that PAG contributes to the evaluation
545 of approach versus avoidance strategies in changing environments (Tryon & Mizumori, 2018) and
546 suggests it may act as a general mediator of adaptive response suppression.

547 The region of interest analysis revealed a striking double dissociation between PAG and nucleus
548 accumbens activity during reversal learning. Whereas nucleus accumbens responses were
549 strongest for rewarded licks (hits), PAG responses were selectively enhanced during correct
550 rejections. This opposing response indicates that PAG and nucleus accumbens contribute
551 complementary signals to support flexible decision-making. The nucleus accumbens has long been
552 implicated in representing positive prediction errors and guiding approach behavior (Montague et
553 al., 1996; Nicola, 2007; Schultz et al., 1997). By contrast, the PAG response profile suggests a role
554 in reinforcing the suppression of actions that no longer yield reward, consistent with its established
555 involvement in aversive learning (Johansen et al., 2010; Walker et al., 2020). This opponency
556 suggests that midbrain and striatal circuits jointly encode both the drive to exploit rewarded
557 contingencies and the need to avoid perseverating on outdated responses. Through its reciprocal
558 connections with both brainstem neuromodulatory centers and midbrain dopamine neurons, the
559 PAG is anatomically poised to influence the teaching signals that drive reinforcement learning
560 even in conditions beyond those classically associated with it. Namely, avoidance learning could,
561 at least in part, be mediated by PAG computations by biasing dopaminergic signaling toward
562 actions in situations where no explicit punishment occurs.

563 Importantly, PAG responses were not observed during initial acquisition, even when behavioral
564 performance was comparable to that achieved in reversal. This indicates that PAG recruitment is
565 not a general feature of value-based learning, but rather emerges selectively when animals must
566 overcome prior learning. The specificity of PAG involvement in reversal echoes prior rodent and
567 primate studies implicating cortical circuits, the orbitofrontal cortex in particular, in behavioral
568 flexibility (Cools et al., 2002; Ghahremani et al., 2010; Izquierdo et al., 2017; Schoenbaum et al.,
569 2006). Our findings extend this literature by demonstrating that the PAG is also selectively
570 engaged under reversal conditions. This supports the notion that flexible decision-making depends
571 on coordinated contributions from both cortical and subcortical regions, with PAG providing a key
572 midbrain computation to facilitate behavioral adaptation.

573 Collectively, our results expand the functional repertoire of the PAG beyond its established role in
574 aversion and defensive behaviors, positioning it as a key node in the neural circuitry that supports
575 flexible decision-making. By demonstrating that PAG activity is selectively recruited during
576 reversal learning, and exhibits functional opponency with striatal reward signals, our findings

577 suggest that PAG contributes to updating value representations when prior contingencies are no
578 longer valid. This role is particularly notable given that mice adapted their behavior without
579 explicit punishment, implying that PAG computations may bias action selection toward adaptive
580 avoidance even in neutral contexts. More broadly, these results underscore the importance of
581 brainstem–forebrain interactions in reinforcement learning and provide a systems-level framework
582 for future studies examining how PAG signals integrate with dopaminergic and cortical circuits to
583 support cognitive flexibility. Elucidating these mechanisms will be critical for understanding how
584 distributed midbrain circuits contribute to adaptive behavior and how their dysfunction may
585 contribute to neuropsychiatric disorders characterized by impaired behavioral flexibility.

586 **Acknowledgments**

587 This work was supported by the Israel Science Foundation (770/17; to I.K.), the National Institutes
588 of Health (1R01NS091037; to I.K.), the Adelis Foundation (to I.K.) and the Prince Center (to I.K.).
589 We thank Technion’s Biological Core Facilities and Edith Suss-Toby for her assistance with the
590 MRI, the Technion Preclinical Research Authority and Nadav Cohen for assistance with animal
591 care, Yael Niv for her helpful comments on the manuscript, and Matteo Farinella for his assistance
592 in illustrating the behavioral setup shown in Figure 1A. We acknowledge the use of generative AI
593 tools (ChatGPT, GPT-4.5, Open AI) to assist in manuscript editing, specifically for grammar and
594 style improvements, as well as enhancing overall readability. These tools did not influence the
595 scientific content or interpretation of our data. Conflict of Interest: None declared.

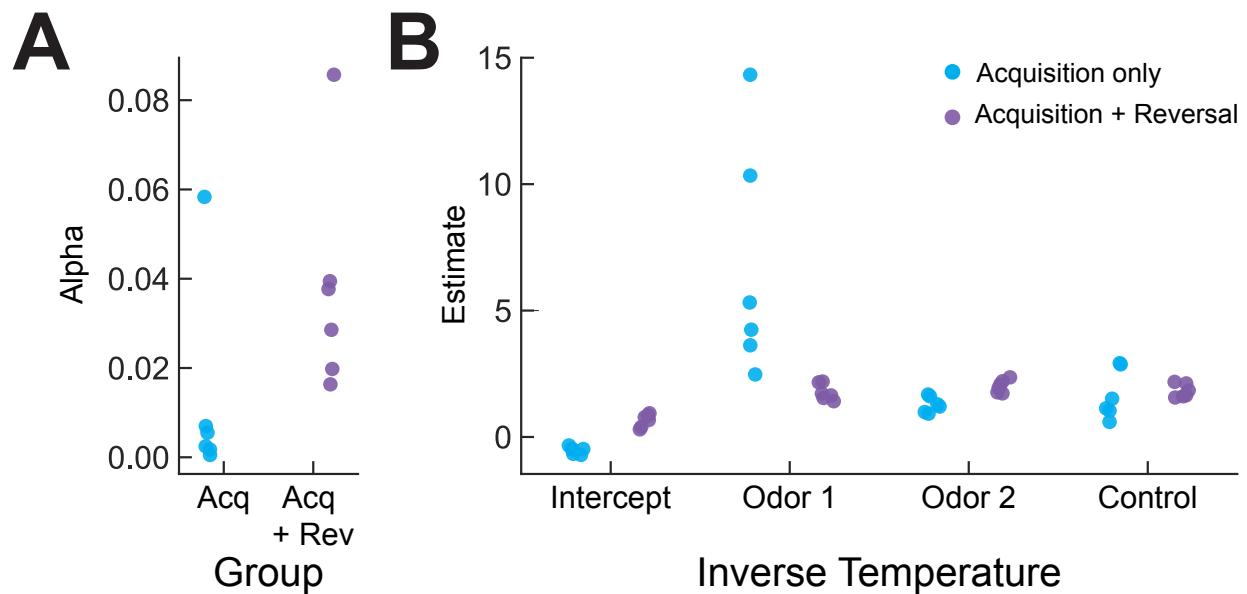
596 **Author contributions**

597 D.L. and I.K. designed the study. D.L. and E.B. conducted experiments. D.L., E.B. and J.N. wrote
598 software for data analysis. R.T.G. and D.L. designed fMRI data analysis. D.L. analyzed the data.
599 D.L. and I.K. prepared the manuscript.

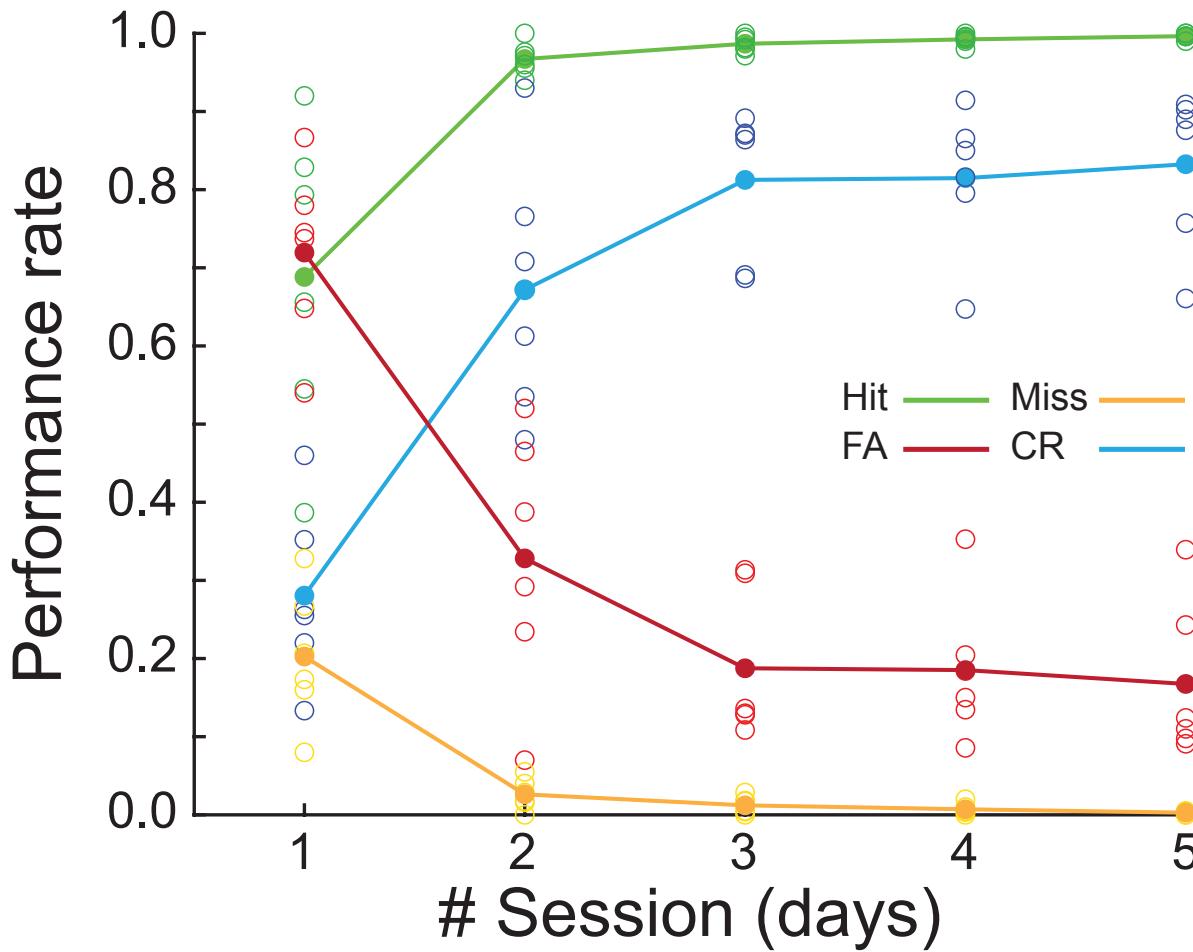
600 **Data availability**

601 Raw imaging data and all statistical maps included in this report will be made available in BIDS
602 format on OpenNeuro upon publication.

603 **Supplementary Materials**

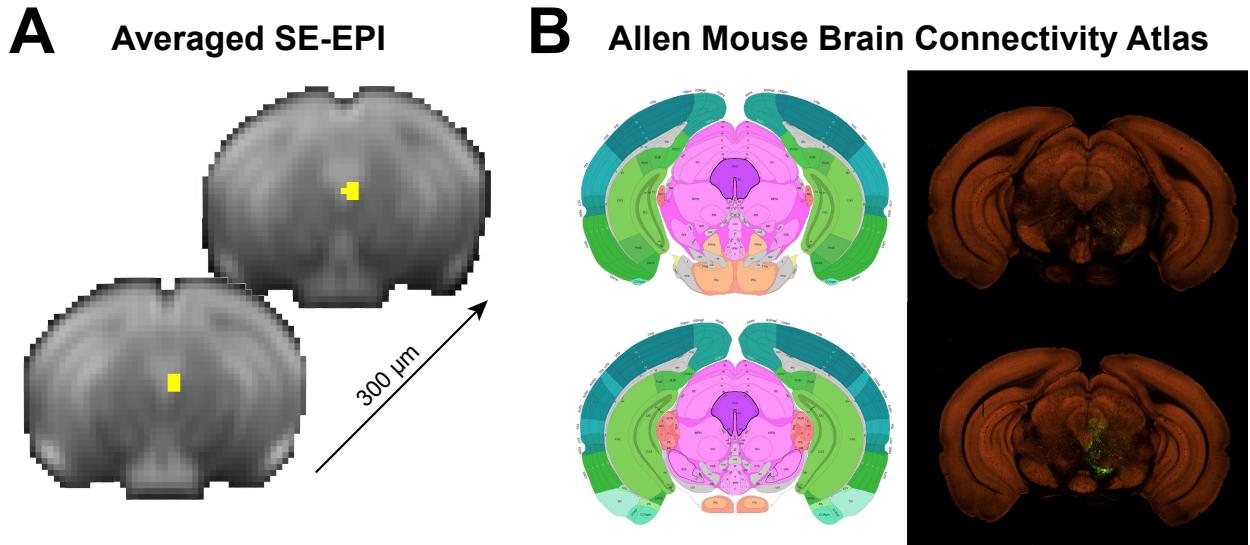


604
605 **Supplementary Figure 1. Group parameters computed by the Q-learning algorithm.** Fitting
606 parameters are shown for the two modeling groups: acquisition only (blue) and acquisition following
607 reversal (purple; $n = 6$ per group). **(A)** Learning rate parameter alpha. **(B)** Beta estimates for intercept (bias
608 to lick), odor 1 (go stimulus), odor 2 (no-go stimulus) and control for changes in airflow during final valve
609 opening (nitrogen).



610

611 **Supplementary Figure 2. Group performance for the different discrimination conditions during**
612 **Reversal.** Behavioral performance rates across five consecutive sessions during the Reversal phase divided
613 by the lick response of the animal to each cue type: Hit (lick to go odor; *green*), Miss (no lick to go odor;
614 *yellow*), False Alarm (FA, lick to no-go odor; *red*) and Correct Rejection (CR, no lick to no-go odor; *light*
615 *blue*). Filled circles indicate group mean and open circles indicate individual subjects ($n = 6$).



616
617 **Supplementary Figure 3. Spatial localization of the periaqueductal gray across fMRI and atlas space.**
618 (A) Periaqueductal gray mask (yellow) defined based on regions showing a significant BOLD response in
619 the whole-brain analysis and further used in the ROI analysis. The ROI mask is presented on an average
620 raw fMRI data (spin-echo echo planar imaging), shown as sequential coronal slices with a slice thickness
621 of 300 μ m. (B) Coronal images (*left*, atlas; *right*, two-photon tomography) taken from the Allen mouse
622 brain connectivity atlas that correspond to the spatial location of the fMRI data. The region highlighted in
623 purple denotes the Periaqueductal gray as defined by the Allen Institute. Image identification numbers are
624 87 (bottom) and 90 (top) in the reference atlas.

Supplementary Table 1. Summary of number of sessions completed by each subject.

Subject	# Sessions			
	Behavior		fMRI	
	Acquisition	Reversal	Acquisition	Reversal
Subject 01	10	—	9	—
Subject 02	10	—	9	—
Subject 03	6	—	6	—
Subject 04	9	5	8	5
Subject 05	15	—	15	—
Subject 06	16	6	14	6
Subject 07	15	6	13	6
Subject 08	14	6	12	6
Subject 09	9	—	9	—
Subject 10	9	—	9	—
Subject 11	8	5	8	5
Subject 12	8	5	8	5

Summary of maximal number of sessions (one session per day) completed by each subject during the *Acquisition* and *Reversal* experimental phases (Behavior). All subjects reached learning criterion in the *Acquisition* phase by the fourth session (3.583 ± 1.621 , mean \pm SD). Of the 6 subjects participating in the *Reversal* phase, 3 subjects completed 8–9 sessions, and 3 completed 14–16 sessions. This manipulation was used to rule out that an extended number of sessions during *Acquisition* affects the results observed during *Reversal*. The table also shows the number of usable fMRI data (fMRI) session, as some were excluded due to software issues or poor performance inside the scanner.

References

Arneodo, E. M., Penikis, K. B., Rabinowitz, N., Licata, A., Cichy, A., Zhang, J., Bozza, T., & Rinberg, D. (2018). Stimulus dependent diversity and stereotypy in the output of an olfactory functional unit. *Nature Communications*, 9(1). <https://doi.org/10.1038/s41467-018-03837-1>

Assareh, N., Sarrami, M., Carrive, P., & McNally, G. P. (2016). The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray. *Behavioral Neuroscience*, 130(4). <https://doi.org/10.1037/bne0000151>

Ballard, I. C., Wagner, A. D., & McClure, S. M. (2019). Hippocampal pattern separation supports reinforcement learning. *Nature Communications*, 10(1). <https://doi.org/10.1038/s41467-019-08998-1>

Bandler, R., & Keay, K. A. (1996). Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. In *Progress in Brain Research* (Vol. 107). [https://doi.org/10.1016/s0079-6123\(08\)61871-3](https://doi.org/10.1016/s0079-6123(08)61871-3)

Barto, A. G. (1995). Adaptive critics and the basal ganglia. In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), *Models of information processing in the basal ganglia*. (pp. 215–232). The MIT Press.

Basbaum, A. I., & Fields, H. L. (1984). Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. *Annual Review of Neuroscience*, VOL. 7. <https://doi.org/10.1146/annurev.ne.07.030184.001521>

Behbehani, M. M. (1995). Functional characteristics of the midbrain periaqueductal gray. In *Progress in Neurobiology* (Vol. 46, Issue 6). [https://doi.org/10.1016/0301-0082\(95\)00009-K](https://doi.org/10.1016/0301-0082(95)00009-K)

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. *Nature Neuroscience*, 10(9). <https://doi.org/10.1038/nn1954>

Bergmann, E., Gofman, X., Kavushansky, A., & Kahn, I. (2020). Individual variability in functional connectivity architecture of the mouse brain. *Communications Biology*, 1–10. <http://dx.doi.org/10.1038/s42003-020-01472-5>

Bergmann, E., Lichtman, D., Resulaj, A., Yona, G., Nahman, O., Rinberg, D., & Kahn, I. (2025). Striatal and hippocampal contributions to instrumental learning in the mouse using high-resolution behavioral monitoring and fMRI. *Imaging Neuroscience*, 3. <https://doi.org/10.1162/IMAG.a.975>

Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using an SPM toolbox. *NeuroImage*, 16.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. *Journal of Statistical Software*, 76(1). <https://doi.org/10.18637/jss.v076.i01>

Carrive, P. (1993). The periaqueductal gray and defensive behavior: Functional representation and neuronal organization. *Behavioural Brain Research*, 58(1–2). [https://doi.org/10.1016/0166-4328\(93\)90088-8](https://doi.org/10.1016/0166-4328(93)90088-8)

Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. *Journal of Neuroscience*, 22(11). <https://doi.org/10.1523/jneurosci.22-11-04563.2002>

Dampney, R. A. L. (1994). Functional organization of central pathways regulating the cardiovascular system. In *Physiological Reviews* (Vol. 74, Issue 2). <https://doi.org/10.1152/physrev.1994.74.2.323>

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. *Nature*, 441(7095). <https://doi.org/10.1038/nature04766>

Dayan, P., & Niv, Y. (2008). Reinforcement learning: The Good, The Bad and The Ugly. In *Current Opinion in Neurobiology* (Vol. 18, Issue 2). <https://doi.org/10.1016/j.conb.2008.08.003>

Desai, M., Kahn, I., Knoblich, U., Bernstein, J., Atallah, H., Yang, A., Kopell, N., Buckner, R. L., Graybiel, A. M., Moore, C. I., & Boyden, E. S. (2011). Mapping brain networks in awake mice using combined optical neural control and fMRI. *Journal of Neurophysiology*, 105(3). <https://doi.org/10.1152/jn.00828.2010>

Diamond, A. (2013). Executive functions. In *Annual Review of Psychology* (Vol. 64). <https://doi.org/10.1146/annurev-psych-113011-143750>

Faull, O. K., Subramanian, H. H., Ezra, M., & Pattinson, K. T. S. (2019). The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. In *Neuroscience and Biobehavioral Reviews* (Vol. 98). <https://doi.org/10.1016/j.neubiorev.2018.12.020>

FitzGerald, T. H. B., Friston, K. J., & Dolan, R. J. (2013). Characterising reward outcome signals in sensory cortex. *NeuroImage*, 83. <https://doi.org/10.1016/j.neuroimage.2013.06.061>

Fonseca, M. S., Bergomi, M. G., Mainen, Z. F., & Shemesh, N. (2020). Functional MRI of large scale activity in behaving mice. *BioRxiv*.

Ge, M., & Balleine, B. W. (2022). The role of the bed nucleus of the stria terminalis in the motivational control of instrumental action. *Frontiers in Behavioral Neuroscience*, 16. <https://doi.org/10.3389/fnbeh.2022.968593>

Gelman, A., & Hill, J. (2006). *Data Analysis Using Regression and Multilevel/Hierarchical Models*. Cambridge University Press. <https://doi.org/10.1017/CBO9780511790942>

Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural components underlying behavioral flexibility in human reversal learning. *Cerebral Cortex, 20*(8). <https://doi.org/10.1093/cercor/bhp247>

Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis. *Proceedings of the National Academy of Sciences of the United States of America, 108*(SUPPL. 3). <https://doi.org/10.1073/pnas.1014269108>

Gorka, A. X., Philips, R. T., Torrisi, S., Manbeck, A., Goodwin, M., Ernst, M., & Grillon, C. (2023). Periaqueductal gray matter and medial prefrontal cortex reflect negative prediction errors during differential conditioning. *Social Cognitive and Affective Neuroscience, 18*(1). <https://doi.org/10.1093/scan/nsad025>

Grandjean, J., Zerbi, V., Balsters, J. H., Wenderoth, N., & Rudin, M. (2017). Structural Basis of Large-Scale Functional Connectivity in the Mouse. *The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 37*(34), 8092–8101. <https://doi.org/10.1523/JNEUROSCI.0438-17.2017>

Greve, D. N. (2002). *optseq2*. Optseq Home Page.

Han, Z., Chen, W., Chen, X., Zhang, K., Tong, C., Zhang, X., Li, C. T., & Liang, Z. (2019). Awake and behaving mouse fMRI during Go/No-Go task. *NeuroImage, 188*. <https://doi.org/10.1016/j.neuroimage.2019.01.002>

Hernández-Ortiz, E., Luis-Islas, J., Tecuapetla, F., Gutierrez, R., & Bermúdez-Rattoni, F. (2023). Top-down circuitry from the anterior insular cortex to VTA dopamine neurons modulates reward-related memory. *Cell Reports, 42*(11). <https://doi.org/10.1016/j.celrep.2023.113365>

Highgate, Q., & Schenk, S. (2020). Cognitive flexibility in humans and other laboratory animals. In *Journal of the Royal Society of New Zealand*. <https://doi.org/10.1080/03036758.2020.1784240>

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. In *Journal of Machine Learning Research* (Vol. 15). <http://mcmc-jags.sourceforge.net>

Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., & Holmes, A. (2017). The neural basis of reversal learning: An updated perspective. In *Neuroscience* (Vol. 345, pp. 12–26). Elsevier Ltd. <https://doi.org/10.1016/j.neuroscience.2016.03.021>

Johansen, J. P., Tarpley, J. W., Ledoux, J. E., & Blair, H. T. (2010). Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. *Nature Neuroscience, 13*(8). <https://doi.org/10.1038/nn.2594>

Kahn, I., Desai, M., Knoblich, U., Bernstein, J., Henninger, M., Graybiel, A. M., Boyden, E. S., Buckner, R. L., & Moore, C. I. (2011). Characterization of the Functional MRI Response

Temporal Linearity via Optical Control of Neocortical Pyramidal Neurons. *Journal of Neuroscience*, 31(42), 15086–15091. <https://doi.org/10.1523/JNEUROSCI.0007-11.2011>

Keay, K. A., & Bandler, R. (2001). Parallel circuits mediating distinct emotional coping reactions to different types of stress. In *Neuroscience and Biobehavioral Reviews* (Vol. 25, Issues 7–8). [https://doi.org/10.1016/S0149-7634\(01\)00049-5](https://doi.org/10.1016/S0149-7634(01)00049-5)

Kogan, J. F., & Fontanini, A. (2024). Learning enhances representations of taste-guided decisions in the mouse gustatory insular cortex. *Current Biology*, 34(9), 1880-1892.e5. <https://doi.org/10.1016/j.cub.2024.03.034>

Kragel, P. A., Bianciardi, M., Hartley, L., Matthewson, G., Choi, J. K., Quigley, K. S., Wald, L. L., Wager, T. D., Barrett, L. F., & Satpute, A. B. (2019). Functional involvement of human periaqueductal gray and other midbrain nuclei in cognitive control. *Journal of Neuroscience*, 39(31). <https://doi.org/10.1523/JNEUROSCI.2043-18.2019>

Krout, K. E., & Loewy, A. D. (2000). Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. *Journal of Comparative Neurology*, 424(1). [https://doi.org/10.1002/1096-9861\(20000814\)424:1<111::AID-CNE9>3.0.CO;2-3](https://doi.org/10.1002/1096-9861(20000814)424:1<111::AID-CNE9>3.0.CO;2-3)

Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S. M., Zeng, H., Dang, C., Hawrylycz, M., & Ng, L. (2015). Neuroinformatics of the allen mouse brain connectivity atlas. *Methods*, 73. <https://doi.org/10.1016/j.ymeth.2014.12.013>

Lawen, A., Succi, I. K., Lichtman, D., Peterka, D. S., Abdus-Saboor, I. J., & Kahn, I. (2025). Dopamine release effects on striatal blood oxygenation and whole brain plasticity underlying associative learning. In *bioRxiv*. <https://doi.org/10.1101/2025.07.20.665732>

Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning and decision making. In *Annual Review of Neuroscience* (Vol. 35). <https://doi.org/10.1146/annurev-neuro-062111-150512>

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A. F., Boguski, M. S., Brockway, K. S., Byrnes, E. J., Chen, L., Chen, L., Chen, T. M., Chin, M. C., Chong, J., Crook, B. E., Czaplinska, A., Dang, C. N., Datta, S., ... Jones, A. R. (2007). Genome-wide atlas of gene expression in the adult mouse brain. *Nature*, 445(7124), 168–176. <https://doi.org/10.1038/nature05453>

Levinson, M., Kolenda, J. P., Alexandrou, G. J., Escanilla, O., Cleland, T. A., Smith, D. M., & Linster, C. (2020). Context-Dependent Odor Learning Requires the Anterior Olfactory Nucleus. *Behavioral Neuroscience*, 134(4). <https://doi.org/10.1037/bne0000371>

Lichtman, D., Bergmann, E., Kavushansky, A., Cohen, N., Levy, N. S., Levy, A. P., & Kahn, I. (2021). Structural and functional brain-wide alterations in A350V Iqsec2 mutant mice displaying autistic-like behavior. *Translational Psychiatry*, 11(1). <https://doi.org/10.1038/s41398-021-01289-8>

Liska, A., Bertero, A., Gomolka, R., Sabbioni, M., Galbusera, A., Barsotti, N., Panzeri, S., Scattoni, M. L., Pasqualetti, M., & Gozzi, A. (2018). Homozygous loss of autism-risk gene *cntnap2* results in reduced local and long-range prefrontal functional connectivity. *Cerebral Cortex*, 28(4), 1141–1153. <https://doi.org/10.1093/cercor/bhx022>

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. *Journal of Neuroscience*, 16(5). <https://doi.org/10.1523/jneurosci.16-05-01936.1996>

Muller, T. H., Butler, J. L., Veselic, S., Miranda, B., Wallis, J. D., Dayan, P., Behrens, T. E. J., Kurth-Nelson, Z., & Kennerley, S. W. (2024). Distributional reinforcement learning in prefrontal cortex. *Nature Neuroscience*, 27(3). <https://doi.org/10.1038/s41593-023-01535-w>

Nicholas, J., Amlang, C., Lin, C. Y. R., Montaser-Kouhsari, L., Desai, N., Pan, M. K., Kuo, S. H., & Shohamy, D. (2024). The Role of the Cerebellum in Learning to Predict Reward: Evidence from Cerebellar Ataxia. *Cerebellum*, 23(4). <https://doi.org/10.1007/s12311-023-01633-2>

Nicholas, J., Daw, N. D., & Shohamy, D. (2022). Uncertainty alters the balance between incremental learning and episodic memory. *ELife*, 11. <https://doi.org/10.7554/ELIFE.81679>

Nicola, S. M. (2007). The nucleus accumbens as part of a basal ganglia action selection circuit. In *Psychopharmacology* (Vol. 191, Issue 3). <https://doi.org/10.1007/s00213-006-0510-4>

Niv, Y. (2009). Reinforcement learning in the brain. *Journal of Mathematical Psychology*, 53(3). <https://doi.org/10.1016/j.jmp.2008.12.005>

O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. In *Current Opinion in Neurobiology* (Vol. 14, Issue 6). <https://doi.org/10.1016/j.conb.2004.10.016>

O'Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, Reward, and Decision Making. In *Annual Review of Psychology* (Vol. 68). <https://doi.org/10.1146/annurev-psych-010416-044216>

O'Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. *Neuron*, 38(2). [https://doi.org/10.1016/S0896-6273\(03\)00169-7](https://doi.org/10.1016/S0896-6273(03)00169-7)

O'Doherty, J. P., Hampton, A., & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. *Annals of the New York Academy of Sciences*, 1104. <https://doi.org/10.1196/annals.1390.022>

Ozawa, T., Ycu, E. A., Kumar, A., Yeh, L. F., Ahmed, T., Koivumaa, J., & Johansen, J. P. (2017). A feedback neural circuit for calibrating aversive memory strength. *Nature Neuroscience*, 20(1). <https://doi.org/10.1038/nn.4439>

Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. *Nature*, 439(7078). <https://doi.org/10.1038/nature04490>

R Core Team. (2024). R Core Team (2024). R: A language and environment for statistical computing. *R Foundation for Statistical Computing, Vienna, Austria*. . <http://www.R-project.org/>

Reis, F. M. C. V., Lee, J. Y., Maesta-Pereira, S., Schuette, P. J., Chakerian, M., Liu, J., La-Vu, M. Q., Tobias, B. C., Ikebara, J. M., Kihara, A. H., Canteras, N. S., Kao, J. C., & Adhikari, A. (2021). Dorsal periaqueductal gray ensembles represent approach and avoidance states. *eLife*, 10. <https://doi.org/10.7554/eLife.64934>

Rescorla, R. (1972). A Theory of Pavlovian Conditioning : Variations in the Effectiveness of Reinforcement and Nonreinforcement. *Classical Conditioning II: Current Research and Theory*, 64–99. <https://cir.nii.ac.jp/crid/1571698601305244544.bib?lang=en>

Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G. E., & Wager, T. D. (2014). Representation of aversive prediction errors in the human periaqueductal gray. *Nature Neuroscience*, 17(11). <https://doi.org/10.1038/nn.3832>

RStudio Team. (2020). Integrated development environment for R. In *The Journal of Wildlife Management* (Vol. 75, Issue 8).

Salamone, J. D., & Correa, M. (2012). The Mysterious Motivational Functions of Mesolimbic Dopamine. In *Neuron* (Vol. 76, Issue 3). <https://doi.org/10.1016/j.neuron.2012.10.021>

Schoenbaum, G., Roesch, M. R., & Stalnaker, T. A. (2006). Orbitofrontal cortex, decision-making and drug addiction. In *Trends in Neurosciences* (Vol. 29, Issue 2). <https://doi.org/10.1016/j.tins.2005.12.006>

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. *Science*, 275(5306). <https://doi.org/10.1126/science.275.5306.1593>

Shusterman, R., Smear, M. C., Koulakov, A. A., & Rinberg, D. (2011). Precise olfactory responses tile the sniff cycle. *Nature Neuroscience*, 14(8), 1039–1044. <https://doi.org/10.1038/nn.2877>

Sukikara, M. H., Mota-Ortiz, S. R., Baldo, M. V., Felício, L. F., & Canteras, N. S. (2006). A role for the periaqueductal gray in switching adaptive behavioral responses. *Journal of Neuroscience*, 26(9). <https://doi.org/10.1523/JNEUROSCI.4279-05.2006>

Sutton, R. S., & Barto, A. G. (1998). *Reinforcement Learning: An Introduction Second edition, in progress.*

Tryon, V. L., & Mizumori, S. J. Y. (2018). A novel role for the periaqueductal gray in consummatory behavior. *Frontiers in Behavioral Neuroscience*, 12. <https://doi.org/10.3389/fnbeh.2018.00178>

van Geen, C., & Gerraty, R. T. (2021). Hierarchical Bayesian models of reinforcement learning: Introduction and comparison to alternative methods. In *Journal of Mathematical Psychology* (Vol. 105). Academic Press Inc. <https://doi.org/10.1016/j.jmp.2021.102602>

Walker, R. A., Wright, K. M., Jhou, T. C., & McDannald, M. A. (2020). The ventrolateral periaqueductal grey updates fear via positive prediction error. *European Journal of Neuroscience*, 51(3). <https://doi.org/10.1111/ejn.14536>

Winkelmeier, L., Filosa, C., Hartig, R., Scheller, M., Sack, M., Reinwald, J. R., Becker, R., Wolf, D., Gerchen, M. F., Sartorius, A., Meyer-Lindenberg, A., Weber-Fahr, W., Clemm von Hohenberg, C., Russo, E., & Kelsch, W. (2022). Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning. *Nature Communications*, 13(1). <https://doi.org/10.1038/s41467-022-30978-1>

Wright, K. M., & McDannald, M. A. (2019). Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. *eLife*, 8. <https://doi.org/10.7554/eLife.45013>