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Abstract 19 

Flexible, goal-directed behavior depends on the ability to update value representations in response 20 

to changing contingencies. This ability depends on distributed brain networks, calling for use of 21 

whole-brain imaging. Widely used in human research, the challenge of functional fMRI in rodents 22 

has only recently been properly addressed, opening the door to whole-brain imaging of behaving 23 

mice. Here, we used functional MRI in mice performing a go/no-go odor discrimination task, we 24 

compared neural activity during initial cue-reward learning (acquisition) and subsequent 25 

contingency reversal. Trial-by-trial estimates of state-action values from a model-free 26 

reinforcement-learning algorithm allowed us to dissociate acquisition from reversal-related 27 

signals, revealing that ventral striatal responses tracked expected value during acquisition, whereas 28 

reversal learning additionally recruited the periaqueductal gray (PAG), a midbrain structure 29 

classically linked to threat processing and aversive learning. PAG activity closely followed model-30 

derived signatures of reversal learning, implicating it in the suppression of previously rewarded 31 

actions and in updating behavior in the absence of explicit punishment. These findings reveal a 32 

previously unrecognized computational role for the PAG in value-based decision-making and 33 

cognitive flexibility, and substantiate task-fMRI as a powerful tool to study the rodent brain at a 34 

mesoscale resolution.  35 
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Introduction 36 

Decision-making often occurs under conditions of uncertainty, yet individuals are generally 37 

capable of making decisions that lead to beneficial outcomes. This capacity relies on neural 38 

mechanisms that support the estimation of outcomes and the adjustment of behavior in response 39 

to changing environmental conditions, a process referred to as cognitive flexibility (Diamond, 40 

2013). Reversal learning paradigms are prominently used to study cognitive flexibility across 41 

species (Highgate & Schenk, 2020; Izquierdo et al., 2017), in which switching of contingencies 42 

creates a violation of learned expectancies, resulting in rapid changes of behavioral responses. This 43 

requires the ability to detect unexpected outcomes, suppress previously reinforced responses, and 44 

update value representations in the light of new contingencies. These adaptive processes are 45 

supported by reinforcement learning mechanisms in the brain. 46 

Reinforcement learning refers to the process by which organisms learn to associate specific stimuli 47 

or actions with rewarding or punishing outcomes, adapting their behavior to maximize positive 48 

results and minimize negative ones (Dayan & Niv, 2008; O’Doherty et al., 2017). A fundamental 49 

pathway supporting reinforcement learning is the dopaminergic input from the ventral tegmental 50 

area (VTA) to the ventral striatum, and specifically the nucleus accumbens, which serves as a 51 

teaching signal and plays a critical role in motivation and value-based decision-making (Barto, 52 

1995; Glimcher, 2011; Montague et al., 1996; O’Doherty, 2004; Salamone & Correa, 2012; 53 

Schultz et al., 1997). Yet this mesolimbic circuitry does not operate in isolation. Converging 54 

evidence shows that other brain regions, including the prefrontal cortex, hippocampus, amygdala, 55 

and potentially even the periaqueductal gray (PAG), shape how reinforcement-learning related 56 

signals are generated, interpreted, and used (Ballard et al., 2019; Lee et al., 2012; Muller et al., 57 

2024; Paton et al., 2006; Roy et al., 2014). Fully characterizing the circuitry involved in these 58 

behaviors therefore requires whole-brain approaches that can capture how canonical reward 59 

pathways interact with systems traditionally studied in other contexts (e.g., in aversion and 60 

defense). 61 

Considerable understanding of brain-wide circuits contributing to reinforcement learning 62 

processes has come from human fMRI studies, where computational modeling of trial-by-trial 63 

neural signals has proven invaluable in dissecting the mechanisms by which brain regions encode 64 

learning, predict behavior, and interact within functional networks (Daw et al., 2006; Niv, 2009; 65 
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O’Doherty et al., 2003, 2007). Yet, despite their insight, human studies are inherently limited in 66 

their ability to establish causality, perform precise circuit manipulations, or achieve the level of 67 

experimental control possible in rodents. Extending this whole-brain imaging approach to 68 

behaving rodents therefore offers a unique opportunity to link systems-level network dynamics 69 

with cellular and molecular mechanisms of learning, bridging a critical translational gap. Until 70 

recently, most rodent imaging studies focused on resting-state fMRI to map functional connectivity 71 

across the mouse brain, further linking it with behavior (Bergmann et al., 2020; Grandjean et al., 72 

2017; Lichtman et al., 2021; Liska et al., 2018). Recent advances by us and others, including the 73 

development of awake imaging setups and rodent-specific hemodynamic models (Bergmann et al., 74 

2025; Desai et al., 2011; Fonseca et al., 2020; Han et al., 2019; Kahn et al., 2011; Lawen et al., 75 

2025; Winkelmeier et al., 2022), now enable the implementation of reliable task-based fMRI. 76 

These developments open the door to probing not only canonical reward regions but also 77 

underappreciated contributors, offering a systems-level perspective that is critical for 78 

understanding the distributed computations underlying reinforcement learning and behavioral 79 

flexibility, which can then be further investigated and manipulated using invasive tools available 80 

in rodents. 81 

Here, we used task-based fMRI of behaving mice to characterize the neural processes involved in 82 

a value-based decision-making task. We developed a non-invasive MR-compatible platform 83 

enabling high-resolution behavioral monitoring of head-fixed mice, which facilitated a 84 

longitudinal study of mice engaged in a go/no-go odor discrimination task followed by rule 85 

reversal, allowing us to investigate the distinct neural mechanisms engaged in initial acquisition 86 

versus reversal learning. We analyzed fMRI data using subject-specific trial-by-trial parameters 87 

derived from a reinforcement-learning model to better capture the temporal dynamics of learning, 88 

thereby improving predictive power and accounting for the small sample sizes feasible in rodent 89 

studies. This approach revealed the involvement of different brain regions in acquisition and 90 

reversal learning, including areas well-established as involved in goal-directed behavior like the 91 

nucleus accumbens, the dorsomedial striatum and the orbitofrontal cortex, but also, surprisingly, 92 

the PAG, which we found to be involved specifically in the reversal phase. Further examination 93 

showed that the PAG exhibits differential activity depending on correct behavioral outcome, is 94 

active during inhibition of lick responses to a “no-go” odor and is inactive during lick responses 95 

to a “go” odor. 96 
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Materials and Methods 97 

Ethics 98 

All animal experiments were conducted in accordance with the United States Public Health 99 

Service’s Policy on Humane Care and Use of Laboratory Animals and approved by the 100 

Institutional Animal Care and Use Committee of the Technion—Israel Institute of Technology. 101 

Animals and housing conditions 102 

Twelve C57Bl/6J male mice (2–3 months old) were housed in groups of 2–5 animals per cage in 103 

a reversed 12-h light–dark cycle with food and water available ad libitum prior to water restriction. 104 

The housing room was maintained at 23 ± 2 °C. All experiments were conducted during the dark 105 

phase. 106 

Head-post surgery 107 

To minimize head movement during scanning, mice were implanted with MRI-compatible head 108 

posts, as previously described (Bergmann et al., 2025; Lichtman et al., 2021). Briefly, mice were 109 

anesthetized with isoflurane (1.5–2.5%), the scalp and periosteum were removed from above the 110 

surface of the skull, and a head post was attached to the skull using dental cement (C&B Metabond, 111 

Parkell, Brentwood, NY, United States). Mice received a subcutaneous injection containing broad-112 

spectrum antibiotics (Cefalexin) and analgesia (Buprenorphine) during the surgery and daily for 113 

at least 3 days after the surgery, and were maintained in their home cage for a postoperative 114 

recovery period of 1 week. 115 

MR-compatible behavioral setup 116 

Experiments were conducted using an MRI-compatible behavioral platform designed to enable 117 

precise odor delivery, water reward control, and simultaneous recording of sniffing and licking 118 

behavior. The system included a custom head-fixation cradle, an air-dilution olfactometer for rapid 119 

odor presentation, the design of which has been previously described in detail  (Arneodo et al., 120 

2018; Shusterman et al., 2011), a non-invasive sniff sensor, a pressure-based lick detector, and a 121 

calibrated water-delivery mechanism. To adapt traditional olfactory setups for the MRI 122 

environment, the olfactometer was positioned outside the scanner bore with its output routed 123 

through a final solenoid valve located near the head-fixation apparatus. This configuration 124 

minimized magnetic interference while maintaining fast odor onset kinetics (steady-state 125 
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concentration reached within ~100 ms). Sniffing was measured through a modified odor port 126 

connected to a miniature pressure transducer via short capillary tubing, providing stable, artifact-127 

free respiration signals. Lick detection was achieved using a pressure-based MRI-compatible 128 

transducer, and water rewards (~2.5 µl per drop) were delivered through a solenoid-gated line 129 

controlled by an Arduino microcontroller. The olfactometer delivered a continuous flow of clean 130 

air (992 ml/min) that switched seamlessly to an odorized stream during stimulus presentation, 131 

preventing mechanical cues. Odorized air was generated by diverting nitrogen through odorant 132 

vials approximately 1 s before valve opening and mixing it into the main airflow to achieve a 133 

tenfold dilution. The final odor pulse lasted 1 s, after which clean air resumed. All flow paths were 134 

constructed from Teflon to prevent odor contamination. Odorant concentration profiles were 135 

verified using a photoionization detector (PID, Aurora Scientific, model 200B). All behavioral and 136 

control signals including sniffing, licks, valve triggers, and reward timing were synchronized and 137 

recorded via MATLAB-based scripts. This high-resolution monitoring approach provided precise 138 

temporal alignment between behavioral events and fMRI acquisition, ensuring accurate 139 

characterization of sensory, motor, and reward-related processes. For a more detailed description 140 

of the experimental setup, see Bergmann et al. (2025). 141 

Flexible discrimination learning 142 

Mice underwent an instrumental go/no-go odor discrimination task followed by a rule reversal in 143 

which odor contingencies were switched.  144 

Following postoperative recovery, mice were single-housed and placed on a 10-day water 145 

restriction schedule, during which the amount of water was gradually reduced from 5 ml to 1 ml 146 

(1 ml per day).  Water restriction was maintained throughout the experiment, including weekends. 147 

During pretraining (3–7 sessions), mice were first habituated to the setup to ensure acclimation to 148 

the scanner environment and were trained during mock scanning to lick a spout to obtain water 149 

rewards, with increasing inter-reward intervals (3–7 s), to shape stable licking behavior. Once mice 150 

consistently licked to consume water in the MRI setup and exhibited stable sniffing signals, they 151 

were scanned while performing the go/no-go task. All animals learned the task (i.e., there was no 152 

attrition). 153 

The task consisted of multiple six-minute blocks, with 50 trials (25 per odor) per block, in which 154 

two neutral odorants (Pinene and Ethyl-Acetate) were presented pseudo-randomly. Each odor 155 
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signaled either a rewarded (“go”) or unrewarded (“no-go”) condition. On each trial (2.5 s), an odor 156 

was presented for 1 s, and the animal was given a 2 s response window from odor onset. Inter-trial 157 

interval ranged from 5–12.5 s. Given a correct lick response to the go odor, the reward was 158 

delivered immediately. Lick responses to the no-go odor were not explicitly punished (only 159 

implicitly as water was not provided for these incorrect responses), and no lick responses were not 160 

rewarded.  161 

During Acquisition, mice (n = 12) underwent 8–16 sessions (Supplementary Table 1) in which 162 

they learned to produce a lick response to the go odor and to withhold licking to the no-go odor. 163 

The first Acquisition session included 10–15 min of lick training during scanner calibration, 164 

allowing acquisition of fMRI data of the first odor presentation. In subsequent sessions, 1–2 blocks 165 

of the task were performed before fMRI data acquisition to allow for scanner calibration. These 166 

blocks were included in the behavioral data presented in Figure 1 but were not included in the 167 

fMRI analyses in subsequent figures.  168 

Next, a subset of this cohort (n = 6) underwent a Reversal phase for 5–6 sessions (Supplementary 169 

Table 1), during which they learned to lick in response to the presentation of the previously 170 

acquired no–go odor and to suppress the previously acquired lick response to the go odor. The 171 

Reversal group was randomly selected and showed learning performance similar to that of the 172 

remaining Acquisition-only mice (see results section). In the first Reversal session, mice performed 173 

1–2 blocks of the original odor discrimination test during scanner calibration to ensure fMRI data 174 

acquisition for the first Reversal block. Subsequent sessions were performed using only the 175 

Reversal task, for which the first 1–2 blocks started before the fMRI data were acquired and 176 

therefore contributed to the behavioral data presented in Figure 1, but not to fMRI analyses in 177 

subsequent figures. Odor identity (go vs. no-go in the Acquisition phase) was counterbalanced 178 

across animals.  179 

Reinforcement learning model 180 

In order to model reinforcement learning we used a previously described (Nicholas et al., 2024) 181 

variant of a model-free Q-learning algorithm (Rescorla, 1972; Sutton & Barto, 1998). The model 182 

assumes a stored value, Ǫ(odor, action), for choosing an action of licking or not licking in response 183 

to a given odor. After each outcome, rt, the Ǫ value for the chosen action was updated according 184 

to: 185 
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Ǫ(odor, action)t+1 = Ǫ(odor, action)t + α(rt – Ǫ(odor, action)t) 186 

where the degree of updating was controlled by the learning rate α (Supplementary Fig.1A), 187 

which was a free parameter that ranges between 0 and 1. Ǫ values of unchosen actions and other 188 

odors remained unchanged. 189 

The model learned separate Ǫ values for each odor (go, no-go, and control (nitrogen flow without 190 

odorant)) and action combination, such that six Ǫ values were estimated in total, three for licking 191 

(lick) and three for not licking (nolick). The two Ǫ values corresponding to the present stimulus, 192 

o, were used to compute a decision variable of the subject’s response on each trial:  193 

𝛥𝑉! = 𝑄(𝑜, 𝑙𝑖𝑐𝑘)! − 𝑄(𝑜, 𝑛𝑜𝑙𝑖𝑐𝑘)! 194 

The probability of licking was modeled using a logistic function:  195 

𝑃(𝑙𝑖𝑐𝑘) =
1

1 + 𝑒"($!%$"&'#)
 196 

where β0 is an intercept parameter that accounts for the bias towards licking and β1 is an inverse 197 

temperature parameter that estimates the sensitivity to the learned values of actions related to the 198 

presented odor (Supplementary Fig.1B).  199 

Model Fitting 200 

We estimated model parameters for each animal using hierarchical Bayesian inference in order to 201 

allow group-level priors to regularize subject-level estimates. This approach to fitting 202 

reinforcement learning models improves parameter identifiability and predictive accuracy (van 203 

Geen & Gerraty, 2021) and has been used to fit similar Q-learning models (Nicholas et al., 2022). 204 

We first split the subjects into two groups: one group that underwent only acquisition (n = 6) and 205 

another that underwent a rule reversal following acquisition (n = 6). This splitting was performed 206 

because we reasoned that pooling data together from all animals would artificially inflate the 207 

learning rate of animals in the acquisition-only group. This is because animals in the reversal group 208 

experienced more trials where new learning was required, effectively doubling the “volatility” of 209 

this environment (Behrens et al., 2007). 210 

To fit the model, the joint posterior was approximated using No-U-Turn Sampling (Hoffman & 211 

Gelman, 2014) as implemented in Stan (Carpenter et al., 2017). Four chains with 2000 samples 212 
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(1000 discarded as burn-in) were run for a total of 4000 posterior samples per model. Chain 213 

convergence was determined by ensuring that the Gelman-Rubin statistic, 𝑅
^

, was close to 1.  214 

The model’s likelihood function can be written as: 215 

𝑐*,! ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃*,!) 216 

where 𝑐*,! is 1 if subject 𝑠 chose to lick on trial 𝑡 and 0 if the subject chose not to lick, and 𝜃*,! is 217 

the estimated probability of this subject licking on this same trial. Following the recommendations 218 

of (Gelman & Hill, 2006), each subject’s intercept and inverse temperature 𝛽* were drawn from a 219 

multivariate normal distribution with mean vector 𝜇$  and covariance matrix 𝛴$: 220 

𝛽* ∼ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(𝜇$ , 𝛴$) 221 

where 𝛴𝛽 was decomposed into a vector of coefficient scales 𝜏𝛽 and a correlation matrix 𝛺$  via: 222 

𝛴$ = 𝑑𝑖𝑎𝑔(𝜏$) × 𝛺$ × 𝑑𝑖𝑎𝑔(𝜏$) 223 

We set weakly-informative hyperpriors on the group-level hyperparameters 𝜇$, 𝛺$ and 𝜏$: 224 

𝜇$ ∼ 𝒩(0,5) 225 

𝜏$ ∼ 𝐶𝑎𝑢𝑐ℎ𝑦%(0,2.5) 226 

𝛺$ ∼ 𝐿𝐾𝐽𝐶𝑜𝑟𝑟(2) 227 

Each subject’s learning rate parameters were also fit hierarchically with the following prior and 228 

hyperpriors (a1, a2): 229 

𝛼* ∼ 𝐵𝑒𝑡𝑎(𝑎1, 𝑎2)
𝑎1 ∼ 𝒩(0,5)
𝑎2 ∼ 𝒩(0,5)

 230 

A description for why these prior and hyperpriors were chosen, as well as further details about the 231 

parameterization, can be found in Nicholas et al. (2022). 232 

Image acquisition and preprocessing 233 

MRI data were acquired as previously described (Bergmann et al., 2025). In brief, scans were 234 

acquired with a 9.4 Tesla MRI (Bruker BioSpin, Ettlingen, Germany) using a quadrature 86 mm 235 
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transmit-only coil (Bruker BioSpin) and a 20 mm loop receive-only coil (Bruker BioSpin), and 236 

were reconstructed using ParaVision 5.1 (Bruker). Mice underwent multiple sessions of event-237 

related fMRI (6–14 sessions during Acquisition, 5–6 sessions during Reversal), with each session 238 

containing multiple runs (2–12 runs per session), i.e., task blocks (see Flexible discrimination 239 

learning section). The rapid-presentation event-related design was generated using Optseq2 240 

(Greve, 2002). 241 

Mice were anesthetized for a short period of time (5% isoflurane) at the start of each session to 242 

allow for positioning them in the scanner. For each session, a relaxation enhancement (RARE) T2-243 

weighted structural imaging (50 coronal slices, TR/TE 2300/8.5 ms, RARE factor = 4, flip 244 

angle = 180°, 200 × 200 × 300 μm3, field of view of 19.2 × 19.2 mm2, matrix size of 96 × 96) was 245 

first acquired while the mice performed the odor discrimination task. Then, blood oxygenation-246 

level dependent (BOLD) contrast run scans were acquired for six minutes using spin echo-echo 247 

planar imaging (SE-EPI) sequence (TR/TE 2500/13.022 ms, flip angle = 90°, 50 coronal slices, 248 

voxel size 200 ×200× 300 μm3, field of view of 14.4 × 9.6 mm2, matrix size of 72 × 48). 249 

Preprocessing of raw data included removal of the first two volumes for T1-equilibration effects, 250 

compensation for slice-dependent time shifts, rigid body correction for head motion, semi-251 

automatic linear registration (FSL FLIRT) to the Allen Mouse Brain Common Coordinate 252 

Framework version 3 (CCFv3, Kuan et al., 2015; Lein et al., 2007) that included a manual 253 

correction step for each session to validate proper alignment, and spatial smoothing with a full 254 

width at half maximum (FWHM) of 500 μm. 255 

fMRI data analysis 256 

fMRI data were analyzed using SPM12 (Wellcome Department of Cognitive Neurology, London, 257 

UK) and SnPM13 (http://nisox.org/Software/SnPM13/). The design matrices of all general linear 258 

models (GLM) computed in this study included the following nuisance regressors: global signal, 259 

ventricles signal, six motion parameters and their first-order derivatives, run constant for all runs 260 

excluding the last run, and events with frame displacement larger than the voxel size (200 μm).  261 

Whole-brain analysis 262 

In order to detect brain regions involved in tracking the value of an action (lick/no-lick) in a given 263 

state, we performed a whole-brain analysis using the decision variable (see Reinforcement-264 
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learning model section) as a covariate. For each animal, all sessions of the relevant experimental 265 

stage (Acquisition/Reversal) were combined to generate a single GLM in which events were 266 

defined as stimulus onset with a duration of zero. In addition, a decision variable regressor was 267 

created as a covariant by convolving the decision variable values with the mouse hemodynamic 268 

response function (HRF) previously modeled by our group (Bergmann et al., 2025). Due to the 269 

relatively slow TR (2.5 s) and the short dynamics of the mouse HRF, it was not possible to 270 

disentangle the stimulus, choice and feedback, and therefore, events were defined as single whole 271 

trials. A linear contrast of regressor coefficients was computed at the single-subject level for the 272 

decision variable regressor and was further used for a second, group-level analysis using a one-273 

sample t-test. All group-level statistical maps were corrected for multiple comparisons using 274 

family-wise error correction. For the group-level parametric analysis (n = 12; Figure 2), the voxel 275 

extension was set to 5 voxels. For non-parametric statistical maps (n = 6; Figure 3), a permutation 276 

test was performed using the sign-flip approach in which 64 permutations, the equivalent of 277 

2nsubject, were computed. To allow for cluster-level inference, we defined the variance smoothing 278 

to be the same FWHM that was applied to the data as instructed by SnPM13 manual. The cluster-279 

defining threshold was set to t statistic of 6 (~ p < 0.001, df = 5, prior to cluster-level inference), 280 

resulting in a critical STCS (suprathreshold cluster size) of 3 voxels.  281 

Brain regions identified in the whole-brain analysis but located near fiber tracts, MRI artifacts, or 282 

close to the brain’s boundaries were excluded from the results section. 283 

Region of interest (ROI) analysis 284 

Following the whole-brain findings of brain regions that are correlated to the Q-learning 285 

computation, we wanted to further assess the contribution of each of these regions to specific 286 

cognitive processes. Thus, for each experimental stage (Acquisition and Reversal), we defined each 287 

trial as an event based on the subject’s response (Hit, False Alarm [FA], Correct Rejection [CR], 288 

and Miss) and generated a GLM per subject for each session separately with regressors 289 

corresponding to the different event types. We created specific ROI masks for regions identified 290 

based on the overlap between contiguous clusters of voxels in the statistical parametric/non-291 

parametric maps and the Allen Mouse Brain Connectivity (AMBC) atlas (Supplementary Fig. 3). 292 

We used the MarsBaR toolbox (Brett et al., 2002) to extract finite impulse responses, plotting the 293 

hemodynamic response without assumptions on its response characteristics, with the onsets shifted 294 
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by 5 s to allow to observe the pre-trial baseline and the full evolution of the response. We note that 295 

while the GLM used to identify the regions and the ROIs used in the ROI analysis are not 296 

independent, the inferences derived from this analysis are intended to characterize how Hits, FAs, 297 

CRs and Misses contribute to the response first identified in the Q-learning GLM which modeled 298 

the go and no-go conditions with the estimated decision variable as a parametric regressor. The 299 

ROI analyses therefore serve to quantify the fMRI response at both the individual-animal level 300 

and across these conditions.  301 

Statistical analyses 302 

Behavioral data were analyzed using MATLAB R2023 (The Mathworks, Natick, MA, USA), 303 

except for analysis of variance (ANOVA) which was performed using jamovi 2.3. For all repeated 304 

measures ANOVA tests, time was defined as a within-subject factor and the parametric tests were 305 

corrected for sphericity violation using the Huynh-Feldt method. For fMRI data, repeated 306 

measures ANOVA was performed in R (R Core Team, 2024) using RStudio (RStudio Team, 307 

2020), with sphericity violation corrected using the Greenhouse-Geisser method.  308 

Results 309 

We utilized an experimental setup that allows for the delivery of odors into the scanner alongside 310 

a closed-loop system for lick detection and water delivery, allowing us to perform behavioral 311 

experiments with high precision in head-fixed mice (for a full description of the setup, see 312 

Bergmann et al., 2025). In this study, mice (n = 12) learned to perform an instrumental odor 313 

discrimination task while undergoing fMRI scanning (Figure 1A), with a subset of mice (n = 6) 314 

undergoing a rule reversal phase during which the action-outcome contingencies were switched. 315 

Mice learn action-outcome associations and subsequent rule reversal in a go/no-go odor 316 

discrimination task 317 

During task Acquisition, mice learned to discriminate between the rewarded stimulus (S+) and the 318 

unrewarded stimulus (S-) and reached a performance criterion of >80% correct responses by the 319 

fourth day (Figure 1B). A repeated-measures analysis of variance (rm-ANOVA) revealed a 320 

significant effect of Time (F(5,11) = 25.2, p < 0.001, η2 = 0.585) as mice gradually learned the 321 

action-outcome associations for both stimuli. Evaluation of the reaction time from odor delivery 322 

to a lick response showed a decrease throughout sessions as animals became more proficient in 323 
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the task (Figure 1C). Next, after the mice reached the criterion and maintained it, task 324 

contingencies were switched in the Reversal stage. Mice rapidly learned the new contingencies 325 

(Figure 1D), reaching a performance criterion on average within two sessions (Friedman rm-326 

ANOVA; χ2 (4,6) = 16.8, p < 0.01). The ability to quickly adapt to the switch in contingencies can 327 

be further observed by a decrease in reaction time throughout sessions during the Reversal phase 328 

(Figure 1E). Overall, mice presented goal-directed behavior during the experiment as indicated 329 

by the gradual lick responses to rewarded stimuli only (without using punishment for incorrect 330 

responses), as can be observed by a significant difference in reaction time for the first session of 331 

reversal relative to acquisition (Figure 1F; Wilcoxon Signed-rank test; W = 20, p < 0.05). 332 

Importantly, when evaluating for differences between the sub-group of mice that underwent only 333 

the acquisition phase and that who underwent a following reversal phase, we found no significant 334 

differences in learning the initial action-outcome association (two-way rm-ANOVA, F(1,11) = 335 

0.231, p = 0.947, η2 = 0.006). 336 

Next, we used a reinforcement-learning model in order to parameterize the value of an action to a 337 

given odor. Specifically, we used a model-free Q-learning algorithm to allow for trial-by-trial 338 

estimation of action values (Q) of each odor to assess the process of choosing an action based on 339 

prior experiences. As estimated by the model, the probability of choosing to lick for the go odor 340 

accurately captures the experimental data (Figure 1G), showing a sharp decrease in probability at 341 

the point of reversal with a steep recovery. To illustrate Q-learning estimation, we plotted the 342 

decision variable values for one of the mice that participated in both Acquisition and Reversal 343 

(Figure 1H), demonstrating that the majority of learning occurred within approximately 500 trials 344 

in both stages (the equivalent of approximately two sessions), matching the time required to reach 345 

criterion for this animal. Similar estimation was observed for the other mice (not shown).    346 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2026. ; https://doi.org/10.64898/2026.01.19.700312doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.19.700312
http://creativecommons.org/licenses/by/4.0/


 14 

 347 

A
Odor

Lick

Water

1 s

Response window

S+ S-

2 s

Hit MissCorrect 
rejection (CR)

False 
alarm (FA)

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Session #1

R
ea

ct
io

n 
Ti

m
e 

(s
)

Acq Rev

F *

0 2 4 6 8 10 12 14 16
# Session

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

 F
ra

ct
io

n

Criterion

Chance

B

-1 1 2 3 4 5 6
# Session

0.8

0.4

0.5

0.6

0.7

0.9

1.0

C
or

re
ct

 F
ra

ct
io

n

Criterion

Chance

D

0 2 4 6 8 10 12 14 16
# Session

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ea

ct
io

n 
Ti

m
e 

(s
)

C

0 2 4 6
# Session

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ea

ct
io

n 
Ti

m
e 

(s
)

E

0 500 1000 1500 2000 2500
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

# Trial

D
ec

is
io

n 
Va

ria
bl

e
   

   
(Q

-li
ck

 - 
Q

-n
o 

lic
k)

Odor A
Odor B

H

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P(
lic

k-
go

)

# Trial

G

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2026. ; https://doi.org/10.64898/2026.01.19.700312doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.19.700312
http://creativecommons.org/licenses/by/4.0/


 15 

Figure 1. Mice display flexible discrimination learning in a Go/No-go task in an experimental setup 348 
allowing for task-based fMRI. (A) Illustration of behavioral setup and task design. Odors were presented 349 
pseudo-randomly for 1 second with a response window lasting 2 seconds from odor onset. (B) Learning 350 
curve showing the averaged ratio of correct responses (Hit and Correct Rejection events) during task 351 
acquisition (n = 12). (C) Averaged reaction time of lick responses to Hit trials as a function of session. (D) 352 
Learning curve showing averaged ratio of correct responses (n = 6). Blue line indicates the last acquisition 353 
session prior to reversal. Purple line indicates the reversal phase. (E) Averaged reaction time of lick 354 
responses to Hit trials as a function of sessions during the reversal phase. (F) Pairwise comparison of the 355 
averaged reaction time for the first session in acquisition vs. reversal. (G) Averaged probability of choosing 356 
to lick in response to ‘go’ trials (n = 6). The gray dashed line indicates the rule reversal onset (95% CIacquisition 357 
= [0.580, 0.966], 95% CIreversal = [0.157, 0.942]). (H) Decision variable (Qlick – Qno-lick) parameter of a 358 
representative animal as computed by the Q-learning model throughout the experiment. The yellow line 359 
represents odor A and the orange line represents odor B. The gray dashed line indicates the time of rule 360 
reversal. Data are shown as mean ± SEM (B, C, D and E). *p < 0.05. 361 

Brain responses indicative of value-based decision-making in the mouse brain 362 

We sought to characterize the neural responses that are involved in reinforcement learning during 363 

flexible discrimination learning. We used the Q-learning algorithm in order to detect brain regions 364 

that take part in computing the value of choosing an action (lick/no-lick) to a given odor stimulus. 365 

Regions that track the decision variable estimated by the model, therefore, reflect the dynamic 366 

nature of learning at the individual-animal level. Specifically, in this task, regions identified using 367 

the decision variable are implicated in learning odor-action associations: one odor signals that 368 

licking will result in water delivery, while the other odor signals that licking will not yield reward. 369 

Though incorrect responses are not explicitly punished, animals learn to avoid unrewarded actions.  370 

To evaluate responses in the task acquisition stage, we used high-field fMRI (9.4T) to measure 371 

distributed brain activity from the naïve state to task proficiency. We entered the decision variable 372 

of each animal (n = 12) as a parametric modulator in first-level GLM analysis, then conducted a 373 

second-level group analysis, calculating a statistical parametric map of regions that correlate with 374 

the decision variable (Figure 2). We observed responses in the basal ganglia (nucleus accumbens 375 

[ACB]), dorsomedial striatum [DMS], dorsolateral striatum [DLS] and globus pallidus externus 376 

[GPe]), regions in the insular cortex (agranular insular area [AI]) related to rewards and learning 377 

the cue-reward association, regions related to odor processing (tenia tecta [TTd] and anterior 378 

olfactory nuclei [AON]), regions related to avoidance and stress regulation (bed nucleus of the 379 

stria terminalis [BST]), and regions related water consumption (posterior AI/gustatory cortex 380 

[GU]). The most prominent responses (numerically) were observed in the striatum (ACB and 381 
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DMS). Overall, this measure reflects responses in brain regions previously implicated in value-382 

based decision-making. 383 

 384 

Figure 2. Neural substrates of Q-learning signals during go/no-go task acquisition. Group-level 385 
parametric one-sample t statistic maps showing BOLD response correlates of the decision variable values 386 
from the Q-learning model (n = 12 mice). The red color spectrum indicates areas with positive correlations 387 
to decision variable values, while blue colors indicate negative correlations. Maps are presented on the 388 
averaged raw fMRI data (spin-echo echo planar imaging) and annotated based on the Allen Mouse Brain 389 
Atlas; p < 0.05, corrected for multiple comparisons using family-wise error correction, voxel extension of 390 
5. ACB, nucleus accumbens; AI, agranular insular area; AON, anterior olfactory nuclei; BST, bed nucleus 391 
of the stria terminalis; GU, gustatory cortex; DLS, dorsolateral striatum; DMS, dorsomedial striatum; GPe, 392 
globus pallidus externus; TT, tenia tecta; d, dorsal; v, ventral. 393 

Next, we sought to characterize the neural responses during rule reversal. Reversal learning 394 

paradigms evaluate behavioral flexibility by switching the contingencies between stimuli and their 395 

outcomes, requiring subjects to change their learned responses when they encounter no reward for 396 

a previously rewarded response, as well as the ability to beneficially respond to a stimulus that 397 

was previously not reinforced. Using this experimental manipulation, we wanted to identify brain 398 

regions that are active during this cognitive process. Given that only a subset of mice underwent 399 

rule reversal, we used a non-parametric approach for whole-brain analysis and ran a permutation 400 

test. A GLM modeling the decision variable at the reversal stage of each animal (n = 6) was entered 401 

into a second-level group one-sample t-test, resulting in a statistical non-parametric map (Figure 402 

3) of regions that were preferentially positively or negatively correlated with the value of licking 403 

or not licking, respectively. This map reveals the involvement of several regions that correlate with 404 
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the decision variable values, showing a positive correlation in frontal and insular cortices 405 

(orbitofrontal [ORB] and AI/GU cortices), striatum (ACB and DMS), pallidum (medial septum 406 

[MS] and GPe) and olfactory processing regions (AON), and negative correlation in the dorsal 407 

hippocampus (HIPP) and ventral PAG.  408 

 409 

Figure 3. Neural substrates of Q-learning signals during reversal learning. Group-level non-parametric 410 
maps showing BOLD response correlates of the decision variable values from the Q-learning model (n = 6 411 
mice). The red color spectrum indicates areas with positive correlations to the decision variable values, 412 
while blue colors indicate negative correlations. Maps are presented on an average raw fMRI data (spin-413 
echo echo planar imaging) and annotated based on the Allen Mouse Brain Atlas; p < 0.05, corrected for 414 
multiple comparisons using family-wise error correction, voxel extension of 3. ACB, nucleus accumbens; 415 
AI, agranular insular area; AON, anterior olfactory nuclei; DMS, dorsomedial striatum; GPe, globus 416 
pallidus externus; GU, gustatory cortex; HIPP, hippocampus; MS, medial septum; ORB, orbitofrontal 417 
cortex; PAG, periaqueductal gray. 418 

Activation of PAG correlates with beneficial behavioral responses in reversal learning only 419 

Given recent findings suggesting that PAG represents an aversive prediction error, and the lack of 420 

evidence linking it to reversal learning and action value, especially under appetitive conditions, 421 

we next sought to characterize its responses in contrast to those in the ACB, a well-established 422 

region for prediction error computation. We therefore examined the PAG and ACB contributions 423 

to the different cognitive components of discrimination learning using an ROI analysis, and looked 424 
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at finite impulse responses (FIR) for conditions differentiated by their behavioral responses, 425 

whether correct or incorrect, and their outcomes (Hit, Correct Rejection, False Alarm, and Miss; 426 

see Supplementary Fig. 2 for behavioral performance). 427 

We estimated FIR-based BOLD response time courses from the PAG and ACB and computed the 428 

mean area under the curve (AUC) across time points for each session to quantify overall response 429 

magnitude. Focusing on the PAG, a two-way repeated-measure ANOVA, with Condition (Hit, 430 

Correct Rejection, False Alarm, and Miss) and Session as within-subject factors, revealed a 431 

significant main effect of Condition (F(1.77, 8.87) = 15.17, p < 0.01, generalized η² = 0.34), 432 

indicating that AUC varied across behavioral outcomes, distinguishing correct from incorrect 433 

responses, and as can be seen in the analyses below, was driven mainly by positive responses to 434 

Correct Rejection and negative to Hit. In contrast, neither the main effect of Session nor the 435 

Session × Condition interaction was significant, suggesting that overall effects were stable across 436 

sessions, with learning occurring in the first session, consistent with the animals’ behavioral 437 

outcomes. Analysis of AUC values from the ACB showed a significant main effect of Condition 438 

(F(1.66, 8.30) = 20.61, p < .001, generalized η² = 0.55) and a significant interaction of Session 439 

× Condition (F(12, 60) = 2.20, p = .023, generalized η²= 0.19), with no significant effect of 440 

Session. 441 

Next, we compared responses between the PAG and ACB. Given that as the animal learns the 442 

decision variable stabilizes and is maximally different between correct licks for the go odor (Hit) 443 

and avoidance for the no-go odor (Correct Rejection) (Figure 1H), we focused on these two 444 

conditions during the last Reversal session when mice had already fully learned the rule reversal 445 

(Figure 4). A two-way repeated-measure ANOVA revealed a significant interaction of 446 

ROI × Condition (F (1, 5) = 55.13, p < .001, generalized η² = 0.83), indicating that the behavioral 447 

effect of Condition reversed between PAG and ACB. Post hoc pairwise comparison performed 448 

within each ROI demonstrated that ACB showed a strong activation to Hit events and inactivation 449 

to Correct Rejection (Figure 4B,C; bottom row) (t (5) = 4.19, p = .020, Holm-adjusted). 450 

Conversely, PAG showed inactivation to Hit events and activation to Correct Rejection (Figure 451 

4B,C; top row; t (5) = 8.95, p = 0.002). Additional cross-region contrasts confirmed this double 452 

dissociation, showing that for Correct Rejection the AUC was higher in PAG than in ACB, 453 

whereas for Hit the AUC was higher in ACB than in PAG (both p ≤ 0.025, Holm-adjusted). Taken 454 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2026. ; https://doi.org/10.64898/2026.01.19.700312doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.19.700312
http://creativecommons.org/licenses/by/4.0/


 19 

together, these findings reveal a crossover interaction in which ACB and PAG exhibit opposite 455 

BOLD response modulations for Correct Rejection versus Hit conditions, highlighting distinct 456 

functional contributions of the two regions to outcome processing. 457 

Figure 4. Opposing roles of the periaqueductal gray (PAG) and nucleus accumbens (ACB) in 458 
mediating adaptive behavior in proficient mice. Region of interest (ROI) analysis showing the time 459 
course fMRI BOLD response in PAG (top) and ACB (bottom) for the fifth session in the reversal stage. (A) 460 
ROI masks are presented on an average raw fMRI image (spin-echo echo planar imaging). (B) BOLD fMRI 461 
Responses to Hit (lick response to go trials; green) and (C) Correct Rejection (no lick to no-go trials; blue) 462 
are shown. The thick lines represent the group averaged response and the thin lines show individual 463 
animals. The gray boxes at time zero depict the odor stimulus timing (1 s). Group mean area under the 464 
curve (AUC) of the fMRI response (filled circles) and individual animals (open circles) demonstrate 465 
consistent responses at the group and individual animal levels.  466 

Finally, we wanted to examine whether the activity observed in PAG is specific to reversal learning 467 

or whether this region contributes to acquisition learning as well (Figure 5). We extracted FIR 468 

responses for an Acquisition session at a timepoint corresponding to reversal learning, when mice 469 

demonstrated comparable performance levels (Figure 5A; Wilcoxon Signed-rank test; p = 1, Z = 470 

0), and computed the AUC values for the two conditions. Looking at the Hit condition, we found 471 

a significant decrease in AUC values for Acquisition relative to Reversal (Figure 5B; Wilcoxon 472 

Signed-rank test; p = 0.031, Z = 21). Comparison of the Correct Rejection condition revealed a 473 

trend (Figure 5C; Wilcoxon Signed-rank test; p = 0.093, Z = 2), showing overall decrease in AUC 474 

values. Further, PAG responses during the Acquisition phase were not significantly different than 475 
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baseline in both conditions (Sign test; Hit: p = 0.218, sign = 1; Correct Rejection: p = 1, sign = 3). 476 

Collectively, the results indicate that the subregion in PAG that was found to be important for 477 

learning of correct behavioral responses in Reversal does not seem to be important for Acquisition. 478 

Figure 5. PAG responses do not contribute to adaptive behavior in proficient mice during 479 
Acquisition. (A) Pairwise comparison of behavioral performance during Acquisition vs. Reversal for 480 
sessions 4/5. (B) FIR responses for Hit condition during Acquisition (left). Pairwise comparison of AUC 481 
values showing individual animals for Acquisition vs. Reversal (right). (C) FIR responses for Correct 482 
Rejection condition during Acquisition (left). Pairwise comparison of AUC values showing individual 483 
animals for Acquisition vs. Reversal (right). For FIR responses, the thick lines represent group averages 484 
and the thin lines show individual animals. The gray boxes at time zero depict the odor stimulus timing (1 485 
s). *p < 0.05, #p < 0.1, n.s. no significance. Insets show PAG region of interest mask presented on an average 486 
raw fMRI image (spin-echo echo planar imaging).   487 
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Discussion 488 

Flexible, goal-directed behavior relies on the capacity to adapt action–outcome associations when 489 

contingencies change. This process, typically studied using reversal learning paradigms, is thought 490 

to depend on corticostriatal circuits and dopaminergic teaching signals, yet it remains unclear 491 

whether additional brain regions may also contribute. Whole-brain imaging approaches provide 492 

an opportunity to address this question. In this study, we found that the periaqueductal gray (PAG) 493 

contributes to cognitive flexibility by supporting the suppression of previously reinforced actions 494 

in the absence of explicit punishment, and assessed its contributions relative to the nucleus 495 

accumbens. By combining task-based fMRI with reinforcement learning modeling in mice 496 

performing an odor discrimination task, we found that acquisition was supported by the nucleus 497 

accumbens, whereas reversal learning additionally engaged the PAG. Notably, PAG responses 498 

contrasted with those in the nucleus accumbens, exhibiting preferential activation during correct 499 

rejection of no-go cues and suppression during correct approach to go cues. Together, these results 500 

identify the PAG as a key contributor to reversal learning, expanding current models of the neural 501 

mechanisms underlying behavioral flexibility. Moreover, they highlight the strength of whole-502 

brain fMRI in rodents, demonstrating that novel findings can emerge even within a well-503 

established and extensively studied behavioral paradigm. 504 

By applying a model-free reinforcement-learning algorithm we were able to capture trial-by-trial 505 

dynamics of value updating and link them to fMRI responses. This computational approach was 506 

essential for detecting the emergence of PAG activity during reversal, as it allowed us to model 507 

how action values evolve across individual trials rather than relying on averaged performance 508 

measures. Computational modeling of reinforcement learning has been highly influential in human 509 

fMRI studies (Niv, 2009; O’Doherty et al., 2003), and its value has only recently been shown in 510 

rodent fMRI as well (Winkelmeier et al., 2022). Our results demonstrate the feasibility and utility 511 

of such models in animal neuroimaging, highlighting how model-based analyses can improve 512 

sensitivity to dynamic neural processes underlying learning. This methodological advance also 513 

paves the way for more direct cross-species comparisons of reinforcement learning circuitry. 514 

Beyond the striatum, our whole-brain analyses revealed that acquisition engaged a distributed set 515 

of regions, including the agranular insula, gustatory cortex, anterior olfactory nuclei, and bed 516 

nucleus of the stria terminalis. These findings are consistent with prior reports that value-based 517 
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learning recruits not only canonical reward regions but also areas involved in sensory processing, 518 

interoception, and stress regulation (FitzGerald et al., 2013; Ge & Balleine, 2022; Hernández-Ortiz 519 

et al., 2023; Kogan & Fontanini, 2024; Levinson et al., 2020). The engagement of olfactory and 520 

gustatory cortices likely reflects the multimodal nature of the task, while activity in the insula and 521 

bed nucleus of the stria terminalis may reflect the integration of reward signals with internal state 522 

and arousal. Together, these observations emphasize that flexible discrimination learning emerges 523 

from the interaction of distributed brain systems, with the PAG contributing selectively during 524 

reversal to bias action suppression once initial associations have been formed. 525 

Classically, the PAG has been implicated in defensive behaviors (Bandler & Keay, 1996; Carrive, 526 

1993), processing nociceptive signals (Basbaum & Fields, 1984; Behbehani, 1995), and 527 

coordinating autonomic responses to threat (Dampney, 1994; Keay & Bandler, 2001). However, 528 

there has been emerging evidence linking it to behavioral flexibility and value-based decision-529 

making (Ozawa et al., 2017; Reis et al., 2021; Sukikara et al., 2006; Wright & McDannald, 2019). 530 

Recent work has highlighted PAG as a potential relay between brainstem value signals and 531 

forebrain decision circuits (Gorka et al., 2023; Roy et al., 2014). Further, PAG neurons were shown 532 

to encode both negative and positive prediction errors (Walker et al., 2020; Wright & McDannald, 533 

2019), and project to thalamic and cortical areas implicated in strategy updating (Assareh et al., 534 

2016; Faull et al., 2019; Kragel et al., 2019; Krout & Loewy, 2000). Thus, PAG serves as a hub 535 

that transforms aversive sensory input into adaptive motor and physiological outputs, thereby 536 

guiding rapid survival-related responses. While the majority of previous studies linking PAG to 537 

reinforcement learning processes used aversive, pain-related paradigms, our task design allowed 538 

for reversal learning to occur in the absence of explicit punishment. Mice adapted their behavior 539 

solely through the omission of expected reward, suggesting that PAG activity may contribute to 540 

updating value representations when contingencies change, even under neutral conditions. Our 541 

results extend the current framework by showing that PAG recruitment can occur in appetitive 542 

tasks without negative reinforcement, highlighting its broader role in signaling the need to suppress 543 

outdated responses. This observation aligns with a proposal that PAG contributes to the evaluation 544 

of approach versus avoidance strategies in changing environments (Tryon & Mizumori, 2018) and 545 

suggests it may act as a general mediator of adaptive response suppression. 546 
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The region of interest analysis revealed a striking double dissociation between PAG and nucleus 547 

accumbens activity during reversal learning. Whereas nucleus accumbens responses were 548 

strongest for rewarded licks (hits), PAG responses were selectively enhanced during correct 549 

rejections. This opposing response indicates that PAG and nucleus accumbens contribute 550 

complementary signals to support flexible decision-making. The nucleus accumbens has long been 551 

implicated in representing positive prediction errors and guiding approach behavior (Montague et 552 

al., 1996; Nicola, 2007; Schultz et al., 1997). By contrast, the PAG response profile suggests a role 553 

in reinforcing the suppression of actions that no longer yield reward, consistent with its established 554 

involvement in aversive learning (Johansen et al., 2010; Walker et al., 2020). This opponency 555 

suggests that midbrain and striatal circuits jointly encode both the drive to exploit rewarded 556 

contingencies and the need to avoid perseverating on outdated responses. Through its reciprocal 557 

connections with both brainstem neuromodulatory centers and midbrain dopamine neurons, the 558 

PAG is anatomically poised to influence the teaching signals that drive reinforcement learning 559 

even in conditions beyond those classically associated with it. Namely, avoidance learning could, 560 

at least in part, be mediated by PAG computations by biasing dopaminergic signaling toward 561 

actions in situations where no explicit punishment occurs. 562 

Importantly, PAG responses were not observed during initial acquisition, even when behavioral 563 

performance was comparable to that achieved in reversal. This indicates that PAG recruitment is 564 

not a general feature of value-based learning, but rather emerges selectively when animals must 565 

overcome prior learning. The specificity of PAG involvement in reversal echoes prior rodent and 566 

primate studies implicating cortical circuits, the orbitofrontal cortex in particular, in behavioral 567 

flexibility (Cools et al., 2002; Ghahremani et al., 2010; Izquierdo et al., 2017; Schoenbaum et al., 568 

2006). Our findings extend this literature by demonstrating that the PAG is also selectively 569 

engaged under reversal conditions. This supports the notion that flexible decision-making depends 570 

on coordinated contributions from both cortical and subcortical regions, with PAG providing a key 571 

midbrain computation to facilitate behavioral adaptation. 572 

Collectively, our results expand the functional repertoire of the PAG beyond its established role in 573 

aversion and defensive behaviors, positioning it as a key node in the neural circuitry that supports 574 

flexible decision-making. By demonstrating that PAG activity is selectively recruited during 575 

reversal learning, and exhibits functional opponency with striatal reward signals, our findings 576 
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suggest that PAG contributes to updating value representations when prior contingencies are no 577 

longer valid. This role is particularly notable given that mice adapted their behavior without 578 

explicit punishment, implying that PAG computations may bias action selection toward adaptive 579 

avoidance even in neutral contexts. More broadly, these results underscore the importance of 580 

brainstem–forebrain interactions in reinforcement learning and provide a systems-level framework 581 

for future studies examining how PAG signals integrate with dopaminergic and cortical circuits to 582 

support cognitive flexibility. Elucidating these mechanisms will be critical for understanding how 583 

distributed midbrain circuits contribute to adaptive behavior and how their dysfunction may 584 

contribute to neuropsychiatric disorders characterized by impaired behavioral flexibility. 585 
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Supplementary Materials 603 

604 
Supplementary Figure 1. Group parameters computed by the Q-learning algorithm. Fitting 605 
parameters are shown for the two modeling groups: acquisition only (blue) and acquisition following 606 
reversal (purple; n = 6 per group). (A) Learning rate parameter alpha. (B) Beta estimates for intercept (bias 607 
to lick), odor 1 (go stimulus), odor 2 (no-go stimulus) and control for changes in airflow during final valve 608 
opening (nitrogen). 609 
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 610 

Supplementary Figure 2. Group performance for the different discrimination conditions during 611 
Reversal. Behavioral performance rates across five consecutive sessions during the Reversal phase divided 612 
by the lick response of the animal to each cue type: Hit (lick to go odor; green), Miss (no lick to go odor; 613 
yellow), False Alarm (FA, lick to no-go odor; red) and Correct Rejection (CR, no lick to no-go odor; light 614 
blue). Filled circles indicate group mean and open circles indicate individual subjects (n = 6).  615 
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616 
Supplementary Figure 3.  Spatial localization of the periaqueductal gray across fMRI and atlas space. 617 
(A) Periaqueductal gray mask (yellow) defined based on regions showing a significant BOLD response in 618 
the whole-brain analysis and further used in the ROI analysis. The ROI mask is presented on an average 619 
raw fMRI data (spin-echo echo planar imaging), shown as sequential coronal slices with a slice thickness 620 
of 300 µm. (B) Coronal images (left, atlas; right, two-photon tomography) taken from the Allen mouse 621 
brain connectivity atlas that correspond to the spatial location of the fMRI data. The region highlighted in 622 
purple denotes the Periaqueductal gray as defined by the Allen Institute. Image identification numbers are 623 
87 (bottom) and 90 (top) in the reference atlas.  624 
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Supplementary Table 1. Summary of number of sessions completed by each subject.  

 

 

 

 

 

 

 

 

 

 

 

Summary of maximal number of sessions (one session per day) completed by each subject during the 

Acquisition and Reversal experimental phases (Behavior). All subjects reached learning criterion in the 

Acquisition phase by the fourth session (3.583 ± 1.621, mean ± SD). Of the 6 subjects participating in the 

Reversal phase, 3 subjects completed 8–9 sessions, and 3 completed 14–16 sessions. This manipulation 

was used to rule out that an extended number of sessions during Acquisition affects the results observed 

during Reversal. The table also shows the number of usable fMRI data (fMRI) session, as some were 

excluded due to software issues or poor performance inside the scanner. 

  

Subject # Sessions  
Behavior fMRI 

  Acquisition Reversal Acquisition Reversal 
Subject 01 10 — 9 — 
Subject 02 10 — 9 — 
Subject 03 6 — 6 — 
Subject 04 9 5 8 5 
Subject 05 15 — 15 — 
Subject 06 16 6 14 6 
Subject 07 15 6 13 6 
Subject 08 14 6 12 6 
Subject 09 9 — 9 — 
Subject 10 9 — 9 — 
Subject 11 8 5 8 5 
Subject 12 8 5 8 5 
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