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A B S T R A C T   

Mathematical knowledge is constructed hierarchically during development from a basic understanding of 
addition and subtraction, two foundational and inter-related, but semantically distinct, numerical operations. 
Early in development, children show remarkable variability in their numerical problem-solving skills and dif
ficulties in solving even simple addition and subtraction problems are a hallmark of math learning difficulties. 
Here, we use novel quantitative analyses to investigate whether less distinct representations are associated with 
poor problem-solving abilities in children during the early stages of math-skill acquisition. Crucially, we leverage 
dimensional and categorical analyses to identify linear and nonlinear neurobehavioral profiles of individual 
differences in math skills. Behaviorally, performance on the two different numerical operations was less 
differentiated in children with low math abilities, and lower problem-solving efficiency stemmed from weak 
evidence-accumulation during problem-solving. Children with low numerical abilities also showed less differ
entiated neural representations between addition and subtraction operations in multiple cortical areas, including 
the fusiform gyrus, intraparietal sulcus, anterior temporal cortex and insula. Furthermore, analysis of multi- 
regional neural representation patterns revealed significantly higher network similarity and aberrant integra
tion of representations within a fusiform gyrus-intraparietal sulcus pathway important for manipulation of nu
merical quantity. These findings identify the lack of distinct neural representations as a novel neurobiological 
feature of individual differences in children’s numerical problem-solving abilities, and an early developmental 
biomarker of low math skills. More generally, our approach combining dimensional and categorical analyses 
overcomes pitfalls associated with the use of arbitrary cutoffs for probing neurobehavioral profiles of individual 
differences in math abilities.   

1. Introduction 

Mathematical knowledge is constructed hierarchically from sym
bolic representations of quantity and rules to manipulate them by add
ing and subtracting items to and from numerical sets. Although the 
symbolic representations of these operations differ only minimally in 

their perceptual format, they differ considerably at the cognitive- 
semantic level (Campbell and Alberts, 2009). Crucially, knowledge of 
basic addition and subtraction problems lies at the core of successful 
acquisition of more complex mathematical skills during development, 
and poor performance on these two basic arithmetic operations is a 
defining phenotypical and clinical feature of learning disabilities and 
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math learning difficulties (MLD) more generally. Here, we use novel 
quantitative analyses to investigate whether two foundational arith
metical operations, namely addition and subtraction, share overlapping 
neural representations, and whether an inability to form distinct rep
resentations is associated with poor problem-solving abilities in children 
during the early stages of math-skill acquisition. A key aspect of our 
approach is that we combined dimensional and categorical analyses to 
uncover linear and nonlinear neurobehavioral profiles of heterogeneity 
in MLD. 

Addition and subtraction differ minimally in surface format and are 
highly inter-related operations, by virtue of the fact that subtraction is 
the mathematical inverse of addition. Perceptually the two operations 
are virtually identical as they differ only by a single vertical line: ‘+’ vs. 
‘–’. However, they are highly dissimilar in terms of cognitive processes 
and efficiency (Barrouillet et al., 2008). Behavioral studies have shown 
that while single-digit addition problems are typically solved by mem
ory retrieval (Barrouillet et al., 2008; Thevenot et al., 2007; Thevenot 
and Barrouillet, 2020) or fast procedural strategies (Ashcraft, 1992; Y. 
Chen and Campbell, 2018), related subtraction problems are far less 
likely to be solved by direct retrieval, and they place greater demands on 
working memory and cognitive control, particularly in children with 
weaker problem-solving skills (Caviola et al., 2014; Hayashi et al., 
2000). Typically-developing children initially use inefficient strategies 
such as finger counting, slow mental counting and eventually learn to 
retrieve solutions to simple addition problems from memory with high 
efficiency; however, they continue to solve subtraction problems with 
more elaborate algorithmic procedures, such as counting and multi-step 
calculation (Barrouillet et al., 2008; G. Peters et al., 2014). While typi
cally developing children engage distinct strategies when starting to 
master addition and subtraction problems, children with poor math 
abilities continue to rely on laborious procedural computations for both 
operations (Ostad, 1999). These behavioral findings suggest that the two 
operations rely on dissimilar cognitive processes, but the extent to which 
they engage distinct brain representations, and the underlying neuro
behavioral sources of individual variability are poorly understood. 

Neuroimaging studies have shown that children with poor math 
abilities show aberrant brain responses and connectivity during the 
processing of both addition and subtraction problems (Ashkenazi et al., 
2012; Iuculano et al., 2015; Lowe, 2011; Rosenberg-Lee et al., 2015; 
Rykhlevskaia, 2009). Surprisingly, despite slower and less accurate 
performance, children with low math skills show significant 
hyper-activity in multiple parietal, occipito-temporal and prefrontal 
regions during arithmetic problem-solving (De Smedt et al., 2011; 
Iuculano et al., 2015; L. Peters and De Smedt, 2018) as well as 
hyper-connectivity between parietal and prefrontal cortices (Rose
nberg-Lee et al., 2015). Yet, although extant brain imaging studies have 
identified the anatomical and functional bases of deficits in children 
with different levels of math difficulties, it remains unclear how these 
aberrancies may relate to behavioral difficulties in arithmetic process
ing, and for different types of numerical problems and operations. 
Examining patterns of neural representations, rather than activations, 
could potentially provide a neurobiological mechanism to probe sources 
of heterogeneity in math processing, and thereby identify novel bio
markers of impairments in children at the lower end of the distribution 
of abilities. Furthermore, it is unknown whether aberrant patterns of 
neural representations exist along a continuum of math abilities or 
whether children with most severe difficulties represent information in a 
fundamentally different manner. To date, few studies have examined 
individual variation in children with low math skills and the neural 
mechanisms associated with these differences, creating a significant 
challenge to our understanding of heterogeneity in math 
problem-solving skills during its formative stages, particularly in chil
dren falling at the lower end of the distribution of abilities. Notably, in 
order to develop effective interventions for those with low math skills, 
the neurobiological basis of the deficits need to be well characterized 
using robust quantitative approaches. Thus far, research into these 

causes has been hindered by variable selection/cut-off criteria used to 
define individuals with lower math abilities (Geary, 2011, 2013). To 
address this challenge, we leverage both dimensional and categorical 
analyses to probe neural representations underlying distinct numerical 
operations in the brains of children with poor math abilities, using 
multiple levels of analyses (Fig. 1). 

The first aim of our study was to investigate behavioral and cognitive 
profiles associated with arithmetic problem-solving involving addition 
and subtraction operations in children with low math abilities 
(Fig. 1A&B). We used both dimensional and categorical approaches to 
determine whether children with low proficiency are impaired on both 
operations, and whether performance on the two operations is less 
differentiated in children with poor math skills compared to their typi
cally developing (TD) peers (Bruyer and Brysbaert, 2011). In addition to 
overt behavioral measures, we evaluated latent decision-making pro
cesses by jointly modelling accuracy and reaction time using a hierar
chical drift diffusion model (HDDM) in which a drift-process 
accumulates evidence over time until it crosses one of the two response 
boundaries (Froehlich et al., 2016; Oganian et al., 2016; Ratcliff and 
McKoon, 2008; Ratcliff and Smith, 2004). Drift-rate, the speed with 
which the accumulation process approaches the decision boundaries, 
represents the relative evidence for or against a particular response 
(Wiecki et al., 2013), and previous work has suggested that a lower 
drift-rate could indicate worse performance on math tasks involving 
addition problem-solving (Iuculano et al., 2020). Therefore, we inves
tigated whether the rate of evidence accumulation to a decision 
threshold was a potential mechanism underlying weak problem-solving 
skills and tested the hypothesis that, compared to their peers with higher 
math skills, children with poor math skills would show a lower speed of 
evidence accumulation, for both addition and subtraction operations. 

The second aim of our study was to characterize neural representa
tions between addition and subtraction operations, and to test the hy
pothesis that children with poor problem-solving abilities show weak 
neural differentiation between the two distinct operations. Different 
from mapping brain activation levels, neural representational similarity 
(NRS) analysis assesses whether cognitive processes share similar neural 
features, and identifies brain areas that are most sensitive to distinctions 
between mental states evoked by specific task conditions (Kriegeskorte 
et al., 2008; Kriegeskorte and Kievit, 2013). Neural representational 
similarity reflects similarities in population-based coding and is there
fore ideal for examining neurocognitive processes underlying addition 
and subtraction problems, given their close perceptual similarity but 
semantic dissimilarity. A previous study found that children with MLD 
tended to show less differentiated neural representations between 
addition problems of different levels of difficulty (Ashkenazi et al., 
2012). Whether such lack of differentiation extends to distinct numeri
cal operations is currently not known. We hypothesized that children 
with low math abilities would show less differentiated neural repre
sentations between two operations because they are likely to engage 
inefficient strategies for both (Ostad, 1999). An alternative hypothesis is 
that if children with lower math abilities engaged entirely different 
cognitive processes for addition and subtraction problems (Barrouillet 
et al., 2008; G. Peters et al., 2014), they would show more differentiated 
neural representations than their TD peers. Here, we test these 
competing hypotheses to gain insights into neurocognitive processes 
associated with basic problem-solving skills in children with MLD. 

In an advance over previous work, we used both dimensional and 
categorical approaches to characterize linear and nonlinear relation
ships of math skills and neural representations of addition and sub
traction, the two arithmetic operations during a crucial age for math 
skill acquisition in children (Fig. 1C&D). A dimensional approach was 
used to assess linear changes along a continuum of arithmetic abilities, 
while a combination of dimensional and categorical approaches was 
used to assess distinct profiles in children at the lower end of the dis
tribution of abilities, including those with MLD, in contrast to the pro
files observed in their TD peers. This two-pronged approach was used to 
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identify brain systems that show weaker- or stronger-than-expected 
profiles in children with MLD. 

The third and final aim of our study was to probe disruptions in 
communication of neural representations across brain regions in chil
dren at the lower end of the distribution of abilities, including those with 
MLD (Fig. 1E&F). In a further advance over previous research in the 
field, we examined representational similarity at a network level and 
determined impairments in co-occurring patterns of deficits across 
multiple brain regions (Anzellotti and Coutanche, 2018; Pillet et al., 
2020). This approach was used to characterize the organization of 
multivariate representational networks in children with low math skills 
and determine specific pathways of impaired communication. Using an 
NRS-based network analysis, we specifically examined whether: (a) 
weak differentiation of neural representations at the regional level is 
also manifested at the network level; and (b) integration of neural rep
resentations in the ventral (i.e., number form system) and dorsal (i.e., 
quantity information system) pathways (Battista et al., 2018; Evans 
et al., 2015; Menon, 2014) are aberrant in children with poor math 
abilities. 

We hypothesized that children with poor math abilities would show 
less differentiated behavioral, cognitive, and neural representational 
profiles between addition and subtraction problems. We further hy
pothesized that aberrant neural representations would be detected in 
distributed brain areas, including parietal areas associated with visuo- 
spatial attention, temporal lobe regions involved in language and se
mantic processing, as well as prefrontal cognitive control systems, 
consistent with a multicomponent model of math learning disabilities 
and developmental dyscalculia (Fias et al., 2013; Iuculano, 2016). We 

demonstrate that our novel quantitative approaches provide a more 
comprehensive understanding of how distinct numerical operations are 
represented in the brains of children, elucidate linear and nonlinear 
profiles of neural representations associated with individual differences 
in children’s math abilities, and reveal weak operation-specific pruning 
of distributed neural circuits. Our findings are relevant for under
standing both typical and atypical development of problem-solving 
skills and has the potential to inform targeted interventions in chil
dren with math learning difficulties. 

2. Method 

2.1. Participants 

A total of forty-six children in their 2nd or 3rd grade of schooling 
(ages 7 to 9) were recruited from multiple school districts in the San 
Francisco Bay area. Informed written consent was obtained from the 
legal guardian of the child and all study protocols were approved by the 
Stanford University Review Board. All participants were volunteers and 
were treated in accordance with the American Psychological Association 
“Ethical Principles of Psychologists and Code of Conduct”. The partici
pants had no history of medical, neurological or psychiatric illness. All 
participants had Full-scale IQ (FS-IQ) scores > 80 (range: 84–128; 
Table 1), as assessed by the Wechsler Abbreviated Scale of Intelligence 
(WASI; Wechsler, 1999). Math skills of children were assessed by the 
Numerical Operations (NumOps) subtest of the Wechsler Individual 
Achievement Test Second Edition (WIAT-II; Wechsler, 2001) given that 
weak arithmetic ability represents one of the most distinctive behavioral 

Fig. 1. Multi-level analytical framework for investigating individual differences in behavioral, cognitive and neural profiles of differentiation between distinct 
numerical operations. (A, B) Analysis of cognitive-behavioral relationship using dimensional and categorical approaches. (C, D) Analysis of cognitive-brain re
lationships using dimensional and categorical approaches. (E, F) Inter-regional network similarity analysis to probe integration of neural representations in pathways 
important for the manipulation of numerical quantity. 
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features of impaired problem-solving skills in children, and it is a hall
mark of MLD (Butterworth, 2005). On this test, a wide range of math 
skills was observed (range: 77–131). One participant with an invalid 
NumOps subtest score due to administrator error was then excluded, 
resulting in a final sample of 45 children (25 Females; mean age = 8.37 
years old). 

Using a norm-based criterion, namely below-grade-level scores (the 
25th percentile. i.e., a standardized score below 90) on the WIAT-II 
NumOps subtest, 21 children were classified as having math learning 
difficulties (MLD group), while 24 children whose scores were at or 
above 90 on the same test formed the TD group (Table S1). The 25th 
percentile was chosen based on the extant literature of cohorts identified 
as having math learning difficulties (Lambert and Spinath, 2018; 
Schwartz et al., 2018; Skeide et al., 2018; Swanson et al., 2018; Tolar 
et al., 2016; Wong and Chan, 2019). We also chose this criterion to 
ensure an appropriate N of children falling within the low-end of the 
distribution of abilities (N = 21) in order to conduct categorical analysis 
of nonlinearity-effects associated with individual differences in math 
problem-solving skills, and to ensure that individuals with low math 
abilities did not have comorbid disabilities in general cognitive func
tions, such as low IQ or impaired working memory compared to TD. The 
MLD and TD groups did not differ on age, FSIQ, Verbal and Performance 
IQ, and standardized Working Memory (WM) measures (Working 
Memory Test Battery for Children, WMTB-C; Pickering and Gathercole, 
2001). The MLD had significant lower NumOps, Math Reasoning and 
Word Reading scores than the TD group (see Table S1). 

2.2. Standard assessments of math and reading abilities 

Children’s mathematical and reading abilities were assessed using 

the WIAT-II (Wechsler, 2001). This achievement battery includes na
tionally standardized measures of academic skills and problem-solving 
abilities for Grades K to 12, which are normed by grade and time of 
academic year (Fall, Spring, or Summer). The Numerical Operations was 
used to assess participants’ mathematical skills and assign children into 
MLD or TD groups, and measures number writing and identification, 
rote counting, number production and simple addition, subtraction, 
multiplication and division. Additionally, the Mathematical Reasoning 
subtest was also administered (see Table 1). This subtest measures 
counting, geometric shape identification, and single- and multi-step 
word problem-solving involving time, money, and measurement. In 
this subtest, students are given unlimited time to solve written math 
problems and the problems are organized with increased progression of 
task difficulty. The participant is required to solve problems with whole 
numbers, fractions or decimals, interpret graphs, identify mathematical 
patterns, and solve problems of statistics and probability. The WIAT-II (i. 
e., Word Reading and Reading Comprehension subtests) was also used to 
assess reading abilities in both cohorts. 

2.3. Experimental procedures 

2.3.1. Functional MRI (fMRI) tasks 
The fMRI experiment examined single-digit arithmetic problem- 

solving skills in children and consisted of one run of addition and one 
run of subtraction. Within each run, there were four task conditions: (i) 
Complex arithmetic, (ii) Simple arithmetic, (iii) Symbol-finding and (iv) 
Passive fixation/rest. In the Complex addition task, participants were 
presented with an equation involving two addends and were asked to 
indicate, via a button press, whether the presented answer was correct 
(e.g., “3 + 4 = 8”). The first operand ranged from 2 to 9, the second from 
2 to 5 (tie problems, such as “5 + 5 = 10”, were excluded), and correct 
answers appeared in 50 % of the trials. Incorrect answers deviated by ±
1 or ±2 from the correct sum. The Simple addition task was identical 
except that one of the addends was always ‘1’ (e.g., “3 + 1 = 4”). In the 
Complex subtraction task, the first operand ranged from 3 to 14 and the 
second operand from 2 to 5. In the Simple subtraction task, the first 
operand ranged from 2 to 14 and the second operand was always ‘1’. As 
in the addition task, incorrect answers deviated by ± 1 or ±2 from the 
actual difference, with the constraint that actual and presented differ
ence was always greater than zero. All subtraction problems were the 
inverse of addition problems and matched on problem size. In the 
symbol-finding condition, participants were asked to decide whether the 
digit “5” was present in a string of symbols, e.g., “3 @ 5 ( 9” or “4 ( 7 @ 
2”. In the passive fixation block-periods the symbol “*” appeared at the 
center of the screen and participants were asked to focus their attention 
on it. 

During the task, stimuli were presented in a block fMRI design in 
order to optimize signal detection (Friston et al., 1999). In each task, 
stimuli were displayed for 5 s with an inter-trial interval of 500 ms. 
There were 18 trials for each task condition, broken into 4 blocks of 4 or 
5 trials (2 blocks of 4 trials and 2 blocks of 5 trials, resulting in a total of 
18 trials), thus each block lasted either 22 or 27.5 s. The total length of 
each experimental run was 6 min and 36 s. The order of blocks was 
randomized across participants with the following constraints: in every 
set of four blocks, all conditions were presented, and the Complex and 
Simple arithmetic condition-blocks were always separated by either a 
symbol-finding (not examined here) or a passive-fixation condition-
block. We focused on the contrast between Complex and Simple arith
metic conditions, rather than the symbol-finding condition, to best 
equate (and thus control for) low-level perceptual, motor and 
decision-making processes involved in arithmetic problem-solving. 
Previous research has shown that ‘N+1′ and ‘N-1′ arithmetic problems 
are solved by incremental, or decremental, counting (Campbell and 
Metcalfe, 2007) with higher accuracy and faster reaction times relative 
to more complex addition (and subtraction) problems (Cho et al., 2011). 
Hence, this choice of contrast allowed us to best isolate processes 

Table 1 
Demographic and cognitive profiles of the whole sample and the TD/MLD 
subgroups.   

The whole sample TD MLD 

N Range Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Gender (Female/ 
Male) 

25F/ 
20M   

12F/12M 13F/8M 

Grade (2nd/3rd) 15/30   7/17 8/13 
Age 45 7.14–9.92 8.37 

(0.64) 
8.40 
(0.64) 

8.34 
(0.65) 

WASI 
VIQ 45 79–138 110 

(12.47) 
111.88 
(12.46) 

107.86 
(12.43) 

PIQ 45 77–145 108.38 
(12.80) 

109.38 
(12.71) 

107.24 
(13.12) 

FSIQ 45 84–128 110.2 
(10.50) 

111.83 
(10.26) 

108.33 
(10.69) 

WIAT-II 
Word reading 45 77–130 106.29 

(11.26) 
110.38 
(9.36) 

101.62 
(11.64) 

Numerical 
operations 

45 77–131 98.73 
(15.01) 

110.75 
(9.60) 

85.00 
(4.29) 

Reading 
comprehension 

45 88–124 106.73 
(10.06) 

109.04 
(10.19) 

104.10 
(9.45) 

Math reasoning 45 50–130 104.69 
(14.78) 

109.17 
(15.64) 

99.57 
(12.16) 

WMTB-C 
Digit recall 45 73–145 106.47 

(16.57) 
107.42 
(16.30) 

105.38 
(17.22) 

Block recall 44 64–114 93.55 
(11.72) 

96.21 
(11.39) 

90.35 
(11.60) 

Count recall 45 56–117 85.38 
(18.82) 

88.04 
(20.03) 

82.33 
(17.31) 

Digit backward 
recall 

45 70–131 96.29 
(16.53) 

100.42 
(15.40) 

91.57 
(16.88) 

Notes: WASI = Wechsler Abbreviated Scale of Intelligence; WIAT-II = Wechsler 
Individual Achievement Test (Second Edition); WMTB-C = Working Memory 
Test Battery for Children. 
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involved in arithmetic problem-solving across addition and subtraction 
tasks, reflecting overall arithmetic problem-solving efficiency with 
different strategies in children. 

2.3.2. Behavioral performance on mental arithmetic tasks 
We determined accuracy (% of correct responses) and Reaction 

Times (RTs) associated with performance of addition and subtraction 
problem-solving tasks during fMRI scanning in each participant. To 
overcome accuracy-speed trade-off issues (Bruyer and Brysbaert, 2011), 
we used composite efficiency scores (ES) calculated as: accuracy 
%/mean RTs of correct responses, to examine task performance so 
higher ES values reflect better performance. We used this measure 
because a speed-accuracy trade-off has been systematically reported to 
be a phenotypic characteristic of poor math performance across a range 
of math abilities, including MLD (Butterworth, 2005; Geary et al., 1991; 
Iuculano et al., 2008; G. Peters et al., 2014; L. Peters and De Smedt, 
2018; Rosenberg-Lee et al., 2015). 

2.3.3. Cognitive modeling of behavior 
The addition and subtraction verification processes (two-choice) 

were modeled as a drift diffusion process, in which evidence accumu
lates over time resulting in a forced-choice selection, when a decision 
threshold is reached. We developed a hierarchical drift diffusion model 
(HDDM) to determine the drift rate, decision threshold, response bias, 
and non-decision time. The drift rate parameter characterizes evidence 
accumulation, with higher values characterizing a greater proportion of 
correct responses, and higher absolute values of the drift rate charac
terizing faster responses. The decision threshold parameter captures the 
degree of evidence required to conclusively evaluate the answers. For 
each individual, the threshold, bias, and non-decision time parameters 
were allowed to vary for addition and subtraction, and for simple versus 
complex problems. The drift rate was hierarchically inferred by adding 
an item-response model that allowed the drift rate to be a combination 
of item-level difficulty that was inferred at a group level (TD and MLD) 
individually for each unique item, and individual level ability, sepa
rately for addition and subtraction. The model was implemented within 
a Bayesian inference framework using JAGS (Plummer, 2003). 

2.3.4. Functional MRI data acquisition 
Functional brain images were acquired on a 3T GE Signa scanner 

(General Electric, Milwaukee, WI) using a custom-built head coil at the 
Stanford University Lucas Imaging Center. Cushions were placed around 
participants’ heads to minimize head movement. A total of 29 axial 
slices (4.0 mm thickness, 0.5 mm skip) parallel to the anterior 
commissure-posterior commissure line and covering the whole brain 
were acquired using a T2* weighted gradient echo spiral-in/spiral-out 
pulse sequence (Glover and Lai, 1998) with the following parameters: 
TR = 2 s, TE = 30 ms, flip angle = 80◦, 1 interleave. The field of view was 
20 cm, and the matrix size was 64 × 64, providing an in-plane spatial 
resolution of 3.125 mm. To reduce blurring and signal loss from field 
inhomogeneity, an automated high-order shimming method based on 
spiral acquisitions was used before acquiring fMRI scans (Kim et al., 
2002). 

2.3.5. Functional MRI data preprocessing 
Data were analyzed using SPM12 (http://www.fil.ion.ucl.ac. 

uk/spm). The first 5 vol were discarded to allow for signal equilibra
tion. Images were reconstructed, by inverse Fourier transform, for each 
of the time points into 64 × 64 x 28 image matrices (voxel size 3.125 ×
3.125 × 4.5 mm). Images were first realigned to the first scan to correct 
for motion and slice acquisition timing. A linear shim correction was 
applied separately for each slice during reconstruction using a magnetic 
field map acquired automatically by the pulse sequence at the beginning 
of the scan (Glover and Lai, 1998). Translational movement in milli
meters (x, y, z) was calculated based on the SPM12 parameters for 
motion correction of the functional images in each subject. To correct for 

deviant volumes resulting from spikes in movement, we used de-spiking 
procedures similar to those implemented in AFNI (Cox, 1996). Deviant 
volumes were identified as having either total displacement from the 
initial volume greater than half of a voxel size (1.562 mm) or change in 
global signal greater than 5 %. The frame-wise displacement was then 
computed as the square root of the sum of both translational and rota
tional displacement by first converting rotational displacement from 
degree to millimeters, assuming a brain radius of 65 mm. Deviant vol
umes were then interpolated using the two adjacent scans. Furthermore, 
translational movement parameters (x, y, z), rotational movement pa
rameters (roll, pitch, yaw), and framewise displacement did not differ 
between MLD and TD groups for either addition or subtraction tasks (all 
ps > .05, see Table S6). No participants had more than 0.5 mm 
frame-to-frame mean displacement. After the interpolation procedure, 
images were spatially normalized to standard stereotaxic space (based 
on the Montreal Neurologic Institute – MNI – coordinate system), 
resampled every 2 mm using sinc interpolation, and smoothed with a 6 
mm full-width half-maximum Gaussian kernel to decrease spatial noise 
prior to statistical analysis. 

2.3.6. Functional MRI data analysis 
1st-level analyses Task-related brain activation in response to each 

condition (complex arithmetic, simple arithmetic, symbol-finding, fix
ation) and each task (addition, subtraction) was first modeled at the 
individual subject-level using the General Linear Model (GLM) imple
mented in SPM12. For each subject we modeled task-related regressors 
as boxcar functions corresponding to the epochs during which each 
condition was presented, and for each task, and convolved with a he
modynamic response function. The six head motion parameters gener
ated in the realignment procedure were also included in the model as 
regressors of non-interest. Voxel-wise contrasts and t-statistics images 
were then generated by contrasting Complex versus Simple problems in 
each task. We focused on the contrast of Complex versus Simple since 
behavioral research suggests that the simple (n ± 1) trials are solved by 
incremental or decremental counting (Campbell and Metcalfe, 2007), 
and performance on this task is characterized by higher accuracy and 
faster reaction times compared to complex problems (Cho et al., 2012; 
Iuculano et al., 2014; Rosenberg-Lee et al., 2011; Young et al., 2012). 
Moreover, because stimuli in the Simple condition have the same format 
as in the Complex condition, it provides a high-level control for sensory 
and number processing, as well as decision-making and response se
lection. All trials were included in the analysis to ensure similar number 
of trials across participants. 

Multi-voxel Representational Similarity Analyses (MRSA) A whole 
brain searchlight MRSA (Kriegeskorte et al., 2008) was used to assess the 
similarity of spatial activity patterns associated with two arithmetic 
tasks: addition and subtraction at the individual subject level. At each 
voxel, a 6 mm radius sphere was used to define a searchlight region. The 
Pearson correlation coefficient between t-scores for addition and sub
traction problems was then computed for each region after removing 
mean brain activity. Then, correlation coefficients were normalized 
using Fisher’s r-to-Z transform: Z = 0.5 * ln ((1 + r)/(1− r)) and entered 
into group-level analyses. First, we used the NRS z-score in a one-sample 
correlational analysis to identify brain regions showing multivoxel 
representation similarity between addition and subtraction that was 
associated with individual differences in math skills using NumOps 
scores. In order to ensure an independent analysis for the nonlinear 
approach, we then investigated brain regions showing different re
lationships of NRS and NumOps between the MLD and TD groups to 
characterize any nonlinear patterns between NRS and NumOps. Signif
icant NRS clusters were determined using a voxel-wise height threshold 
of p < 0.005, FDR-corrected for multiple spatial comparisons at p < 0.01 
(cluster extent 87 voxels), based on Monte Carlo simulations (Cho et al., 
2012; Iuculano et al., 2014). 

Multi-region network similarity analysis In order to further inves
tigate how neural representations were related to individual differences 
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in math skills in children at a network level, we conducted a series of 
analyses based on the NRS score from the local regions which showed 
significant correlations – in terms of less differentiated neural repre
sentations – and math skills across individuals (Table 2 and Fig. 3). We 
characterized the multi-region network similarity in MLD and TD groups 
separately. Based on the regional NRS of the same set of identified re
gions from the GLM results, we first calculated the Manhattan Distance 
of these brain regions across all subjects with MLD or across all subjects 
in the TD group, and then converted the Distance matrix into a similarity 
matrix by normalization, 1-(D-min(D))/range(D), in which D is the dis
tance matrix. We then used independent sample t-tests to examine group 
difference (MLD vs TD) in the mean values of the lower triangles of the 
multi-region similarity matrix. To test the hypothesis of deficits in 
ventral-dorsal integration in MLD, we selected three regions from the 
GLM results for this analysis: (i) the posterior fusiform gyrus (pFG) as a 
seed, and examined the similarity of the right pFG with a (ii) dorsal 
target superior parietal lobe/intraparietal sulcus (SPL/IPS) and a (iii) 
ventral target superior anterior temporal cortex (sATC) as a comparison 
control). We chose these regions as they are core regions for repre
senting the number form, manipulation of numerical quantity, and se
mantic knowledge of numerical operations (Fias et al., 2013; Iuculano, 
2016; Menon, 2014; L. Peters and De Smedt, 2018). The significance 
testing was conducted by subsampling and permutation. In each per
mutation, we subsampled 80% of subjects in the MLD and TD groups 
separately, and conducted the same multi-region similarity analysis and 
the hierarchical clustering based on the similarity matrix. We recorded 
the distance of pFG with SPL/IPS and sATC in MLD and TD groups. After 
10,000 permutations of this procedure, we established distributions of 
pFG-SPL/IPS and pFG-sATC distances in both MLD and TD. Finally, we 
conducted a two-way ANOVA to examine the interaction between Group 
(MLD vs. TD) and Target (dorsal vs. ventral). 

3. Results 

3.1. Performance on addition and subtraction operations is correlated 
with individual differences in math abilities 

We investigated the relation between performance on addition and 
subtraction tasks, undertaken during fMRI scanning, and Numerical 
Operations (NumOps) subscores of the WIAT-II, a standardized measure 

of math abilities (see Table 1) (Wechsler, 2001). Behavioral perfor
mance was assessed using efficiency scores (Iuculano et al., 2008), a 
composite measure obtained by dividing accuracy by mean reaction 
time (RT) in each participant (Bruyer and Brysbaert, 2011). Efficiency 
scores in both addition (r = 0.447, p < 0.01) and subtraction (r = 0.299, 
p < 0.05) were correlated with NumOps, suggesting that children with 
lower math abilities performed worse on both arithmetical operations 
(Fig. 2A). Although the overall difference in slopes was not significant (p 
> 0.05), children at the lower end of performance tended to show 
smaller differences in efficiency between the two operations. Additional 
analyses with accuracy and RT measures, separately, are reported in the 
Supplementary Information (see Figure S1 and Tables S1 & S2). 

3.2. Less differentiated performance in children with MLD 

Next, we used a categorical approach to investigate whether children 
with MLD show poorer performance overall, when compared to TD 
controls, and crucially, whether they show less differentiated perfor
mance between the addition and subtraction operations (Table S3). A 
two-way mixed ANOVA on performance efficiency with between-subject 
factor Group (MLD vs. TD) and within-subject factor Operation (Addition 
vs. Subtraction) revealed a significant interaction between Group and 
Operation (F (1,43) = 4.647, p < 0.05). Main effects of Group (F (1,43) =
11.22, p < 0.01) and Operation (F (1,43) = 8.062, p < 0.01) were also 
significant. Further analysis revealed that in the MLD group, there was 
no significant difference between performance on addition and sub
traction (t (20) = 0.3085, p = 0.76), whereas the TD controls showed 
significantly better performance in the addition task, compared to the 
subtraction task (t (23) = 4.376, p < 0.001) (Fig. 2B). It is unlikely that 
the lack of statistically significance in the MLD group was due to sample 
size because the sample size of n = 21 (i.e., MLD group) had a large a- 
priori power = 95 % assuming the same effect size in TD (d = 0.83), at 
the α = 0.05 level. 

3.3. Decision-making associated with addition and subtraction problem- 
solving is impaired in children with low abilities 

Next, we investigated latent decision-making processes associated 
with arithmetic problem-solving by combining hierarchical drift diffu
sion modeling (Ratcliff and McKoon, 2008; Ratcliff and Smith, 2004) 
with item-response based modeling to account for differential item-level 
difficulty. We found that NumOps scores were positively correlated with 
the drift rate on addition (r = 0.341, p < 0.05) and subtraction (r =
0.347, p < 0.05) problems. No other model parameters – decision 
threshold, non-decision time, or response bias – showed a significant 
correlation with NumOps scores (Table S4). Comparison of children with 
MLD and their TD peers revealed that the drift rate on addition and 
subtraction problems differed in the TD group (MAdd = 0.91 vs. MSub =

0.80, p < 0.05), but not in the MLD group (MAdd = 0.68 vs. MSub = 0.60, 
p > 0.05; a-priori power = 46 % at α = 0.05 assuming a similar effect size 
in TD as d = 0.43) (Figure S2). 

3.4. Less differentiated neural representations in children with lower math 
abilities 

We next sought to determine whether low math abilities are asso
ciated with weaker differentiation between neural representations for 
addition and subtraction problems, using a whole-brain searchlight al
gorithm (Ashkenazi et al., 2012; Bugden et al., 2019; Misaki et al., 
2009). We found that NumOps scores were negatively correlated with 
NRS values between addition and subtraction problems in multiple 
parietal-temporal-prefrontal areas, including intraparietal sulcus (IPS), 
posterior superior temporal sulcus (pSTS) and the superior part of the 
anterior temporal cortex (sATC), and anterior insula (Table 2 and 
Fig. 3A–H). No brain regions showed a positive correlation between NRS 
and NumOps scores. These results suggest that more distinct NRS is a 

Table 2 
Brain regions showing significant effects of NRS associated with NumOps scores 
and Group (MLD vs. TD)* NumOps interaction.  

Main effect of NumOps (linear) 

Region MNI Coordinates   

x y z Max Z Cluster Size 

Negative effect 
Left STS/Heschl’s gyrus − 42 − 22 2 5.72 414 
Right IPL/IPS 26 − 72 52 5.45 318 
Right Ventral Striatum 26 − 10 2 4.79 316 
Right ventral insula 32 6 − 12 4.14 200 
Right SPL/IPS 46 − 40 52 3.79 112 
Left TPJ/SMG − 64 − 44 22 3.74 192 
Left sATC − 50 12 − 22 3.56 90 
Right cerebellum 38 − 64 − 24 3.50 274 
Right FG 36 − 62 − 12 3.21  

Positive effect 

No significant clusters 

Interaction between Group*NumOps (nonlinear) 

TD > MLD      
Left dlPFC − 30 36 28 3.74 97 
Left IPS − 28 − 72 42 3.76 89 
Right Cerebellum 14 − 50 − 22 4.30 103 
MLD > TD 
No significant clusters  
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hallmark of higher math skills in children. 

3.5. Less differentiated neural representations in children with MLD 

A categorical approach was used to further demonstrate that children 
identified as MLD in our study did show aberrant neural representations 
in the same set of regions revealed in the dimensional analysis. Two- 
sample t-tests between the MLD and TD groups showed a significant 
group difference in each of the parietal, temporal and prefrontal cortex 
regions identified above, with the MLD group showing significantly 
higher NRS values between addition and subtraction problems (all ps <
.05; Fig. 3I and Table S5). 

3.6. Nonlinear profile of less differentiated neural representations in 
children with MLD 

Next, we investigated whether any brain regions showed nonlinear 
profiles of neural representations in children with MLD, compared to TD 
controls. This analysis allowed us to identify brain areas that showed 
worse- or better-than-expected profiles in children with MLD. Adding 
group membership (MLD, TD) as a moderator (Fig. 4A), we found a 
significant interaction between Group and NumOps scores on NRS in the 
left superior part of the anterior temporal cortex (sATC; Fig. 4B). 
Additionally, the independent whole-brain NRS analysis examining the 
interaction between Group and NumOps on NRS, identified two other 
brain regions: the left dorsolateral prefrontal cortex (dlPFC) and intra
parietal sulcus (IPS), which showed a moderation effect of Group on the 
relationship between NumOps scores and NRS values (height threshold p 
< 0.005; FDR-corrected for multiple spatial comparisons at p < 0.01). 
Specifically, we found that lower NumOps scores were associated with 
higher NRS values in the MLD group only (all ps < 0.05; Fig. 4C&D), but 
no such relationship was found in the TD group. More surprisingly, the 
relationship between NumOps and NRS values was positive in the TD 
group in left dlPFC (p < 0.001). 

3.7. Aberrant multi-region network similarity in children with MLD 

As noted above, we found a significant relationship between math 
abilities and NRS values in multiple brain regions. We extended this 

analysis to determine whether aberrant neural representations at the 
local level are also manifested at the network level. We first noted that 
when we averaged NRS values across the eight brain regions shown in 
Fig. 3 and tested their association with NumOps, we observed a signifi
cant negative relationship: r (43) = -0.82, p < 0.001. This result is not 
surprising given the linear relationship between NumOps scores and NRS 
values found in individual brain regions. The consistent pattern across 
these brain regions can be seen in Fig. 5A&B. Furthermore, we also 
observed that the multi-region NRS values across individuals seemed to 
be more similar (or consistent) in the MLD group, i.e., the individual 
lines showed similar patterns around the group averaged line, compared 
to the TD group. This observation suggested that NRS across multiple 
brain regions (i.e., multi-region network similarity) could provide a 
novel aspect of neural representational similarity at a network level. 

To further quantify the consistent patterns of NRS across multiple 
brain regions and its relationship to arithmetic abilities, we examined 
whether children with MLD showed different patterns of network-level 
similarity compared to TD controls. To calculate the multi-region 
network similarity, we first derived a distance matrix between 
regional NRS values across participants in the MLD and TD groups 
separately. We then converted the group-specific distance matrices to a 
similarity measure wherein ‘0’ indexed lowest similarity (i.e., largest 
distance) and ‘1’ highest similarity (i.e., shortest distance; for more 
details see Method). We found that children with MLD showed higher 
multi-region network similarity compared to TD children (Fig. 5C&D). 
Permutation tests with 10,000 subsampling procedures revealed a sig
nificant difference in the multi-region network similarity matrix be
tween MLD and TD groups (MMLD = 0.66, MTD = 0.43; p < 0.001; 
Fig. 5E). 

3.8. Aberrancies of neural representations in the ventral-dorsal pathway 
in children with MLD 

To further investigate the structure of multi-region network simi
larity, we applied hierarchical clustering to the similarity matrix in the 
MLD and TD groups, separately. This analysis revealed that the multi- 
region representations between the posterior fusiform gyrus (pFG) and 
Superior Parietal Lobule/Intra-Parietal Sulcus (SPL/IPS) were clustered 
at a higher level of hierarchy in children with MLD, compared to TD 

Fig. 2. Behavioral performance during problem-solving involving addition and subtraction operations. (A) Numerical Operations subtest scores were significantly 
correlated with performance efficiency (accuracy/reaction time) in both addition and subtraction tasks; (B) Lower efficiency in children with MLD compared to TD 
children in both addition and subtraction tasks. A significant difference between addition and subtraction operations was observed in TD, but not in MLD children. 
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Fig. 3. Higher Neural Representational Similarity (NRS) in children with low math abilities. (A) Brain regions showing significant negative correlation between NRS 
and Numerical Operations (NumOps) scores of the WIAT-II. (B–H) Children with low math abilities show higher NRS values in multiple parietal, temporal and pre
frontal cortical regions (I) Children with MLD show higher NRS values than TD children (ROIs were chosen to visualize the MRS difference in a categorical approach). 
Note: Statistical testing and analysis were conducted using a stringent threshold (height, p < 0.005; FDR-corrected for cluster extent p < 0.01); to facilitate visu
alization activation maps are shown at p < 0.01 (height) (FDR-corrected for cluster extent p < 0.01). STS/HG = Superior Temporal Sulcus and Heschl’s gyrus; IPS =
Intraparietal Sulcus; VS = Ventral Striatum (putamen/pallidum); pFG = posterior Fusiform Gyrus; TPJ/SMG = Temporoparietal Junction and Supramarginal Gyrus; 
SPL/IPS = Superior Parietal Lobule and Intraparietal Sulcus; and sATC = superior Anterior Temporal Cortex. 
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children. In contrast, multi-region representations between the pFG and 
the superior anterior temporal cortex (sATC) were clustered at a higher 
level of hierarchy in TD children. Using permutation testing across 
10,000 subsamples, we confirmed that neural similarity between pFG 
and SPL/IPS representations was significantly lower in the MLD group, 
compared to the TD group, while similarity between the pFG and the 
sATC showed a reverse pattern (p < 0.001; Fig. 5F). 

4. Discussion 

We examined whether addition and subtraction, the two founda
tional numerical operations, are represented differently in children with 
low math abilities, compared to their TD peers. Both dimensional and 
categorical approaches revealed less differentiated neural representa
tions in children with low math abilities in multiple neurocognitive 
systems including the parietal visuo-spatial attention, lateral temporal 
lobe language-semantic, and prefrontal cognitive control systems. 
Furthermore, a nonlinear profile characterized by a worse-than- 
expected profile of deficits in children with MLD was detected in fron
toparietal attention and anterior temporal cortex language-semantic 
systems. Analysis of multi-region network similarity patterns revealed 
weak communication of neural representations across pathways linking 
the fusiform gyrus with parietal regions important for manipulation of 
quantity and numerical problem-solving. Together, these findings point 
to weak pruning of local and distributed neural circuits in children with 
poor math abilities, and identify less differentiated neural representa
tions as a potential neurobiological signature of MLD. 

4.1. Weak behavioral differentiation between numerical operations in 
children with low mathematical skills 

The first aim of our study was to investigate behavioral performance 
and decision-making associated with problem-solving involving addi
tion and subtraction operations in children with low math abilities. Not 
surprisingly, children with poor math abilities showed lower efficiency 
in solving addition and subtraction problems. Critically, children with 
lower math skills were similarly impaired in problem-solving efficiency 
of both operations. In contrast, compared to their TD peers who per
formed better on addition than subtraction problems, children with MLD 
showed no such distinction. Children with low math abilities showed 
less differentiated performance on the two numerical operations, sug
gesting the engagement of similar – and inefficient – computational – 
strategies for both addition and subtraction operations/problems. 

Computational modeling of latent decision-making processes during 
problem-solving revealed that lower math abilities were related to 
slower drift rate (v) for both addition and subtraction problems on a 
continuous scale. At a group level, TD children, compared to children 
with MLD, showed better differentiation on drift rate (v) between 
addition and subtraction problems. This suggests that decision-making 
processes between operations are better differentiated in TD children 
compared to the MLD group. Our results indicate that lower problem- 
solving efficiency in children with impaired math abilities may stem 
from weak evidence-accumulation, partly on account of poor item 
discrimination, leading to impaired decision-making. In TD children, the 
rate of evidence accumulation differed significantly between addition 

Fig. 4. Nonlinear relationship between math ability and Neural Representational Similarity (NRS). (A) Model to test effect of group membership on the relationship 
between NumOps and NRS. (B–D) NRS values in the superior part of the left anterior temporal cortex (sATC), left intraparietal sulcus (IPS), and left dorsolateral 
prefrontal cortex (dlPFC) were associated with lower math skills in children with MLD, but not in TD children. 
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Fig. 5. Aberrant inter-regional network similarity in 
children with MLD. (A, B) Individual and group- 
averaged NRS across brain regions in children with 
MLD and TD children. (C, D) Network similarity 
matrix based on NRS values in eight brain areas that 
showed higher regional NRS in MLD, compared to the 
TD group. (E) The average network similarity was 
higher in MLD compared to TD children; (F) NRS 
similarity between the fusiform gyrus and intra
parietal sulcus (FG-IPS) nodes was lower in children 
with MLD, compared to TD children. In contrast, NRS 
similarity between the fusiform gyrus and the supe
rior anterior temporal cortex (FG-sATC) nodes was 
higher in children with MLD, compared to TD chil
dren. Error bars and significance were estimated 
using subsampling and permutation testing.   
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and subtraction problems, and therefore, it is reasonable to assume that 
at this developmental stage, TD children may rely on different strategies, 
processes, or representations for solving addition and subtraction 
problems (Barrouillet et al., 2008; Geary et al., 1991; Jordan et al., 2003; 
Ostad, 1999), and children with MLD did not show such a distinction. 
Further studies with larger samples and analysis of strategy-use are 
needed to elaborate on the observed patterns. 

Previous research has suggested that children with poor math abil
ities fail to use retrieval strategies even for simple addition problems, 
and they adopt suboptimal strategies for both operations (Ostad, 1999). 
During the early stages of formal math learning, children use a wide 
range of inefficient strategies, such as finger counting, verbal counting 
and some forms of decomposition, for solving both operations (Bar
rouillet et al., 2008; Siegler, 1987; Siegler and Shrager, 1984). With 
increased practice, operation-specific shifts take place, and by 3rd grade, 
neurotypical children start applying more efficient retrieval strategies 
for addition problems while continuing to rely on more laborious mental 
manipulation strategies for subtraction problems (Barrouillet et al., 
2008; Geary et al., 1991; Jordan et al., 2003; Ostad, 1999). Our findings 
converge on these observations, and suggest that children with low math 
abilities may rely on similar, indistinct, and suboptimal cognitive pro
cesses for solving the two distinct operations. 

4.2. Neural representations are less distinct in children with low math 
abilities 

The second aim of our study was to determine the neural un
derpinnings related to weak behavioral differentiation in children with 
poor math abilities. Specifically, we examined whether children with 
low math abilities showed weak neural differentiation during problem- 
solving associated with the two numerical operations. We found that 
children with low math abilities displayed less distinct neural repre
sentations in posterior parietal, prefrontal and lateral temporal cortices 
including the intraparietal sulcus (IPS), anterior insula, fusiform gyrus, 
and anterior temporal cortex. Interestingly, no brain region showed 
lower neural representational similarity, i.e., more differentiated rep
resentations, in children with weak math abilities. These results provide 
novel insights into the neurobiological basis of behavioral learning dif
ficulties in math problem-solving, highlighting a distinctive brain-based 
feature of impairment in relation to two foundational arithmetical op
erations, deficits in which are known to be a defining phenotypic feature 
of MLD. 

It is noteworthy that the format of numerical problems presented to 
participants was perceptually identical across the two problem types: 
the two strings of presented problems differ only by a single vertical line 
‘+’ vs. ‘–’. Thus, as expected, no individual differences or aberrancies in 
neural representations were found in primary visual cortex, consistent 
with the view that the lack of distinct representations arises at the se
mantic level, rather than at the low-level perceptual processing. 

Less differentiated neural representations between addition and 
subtraction problems associated with lower math skills were observed in 
the IPS/SPL, a brain region that plays a critical role in quantity judge
ment and manipulation (Dehaene et al., 2003; Holloway et al., 2013; 
Schel and Klingberg, 2016). The IPS/SPL is a critical locus of numerical 
processing deficits in children and adults with MLD (Arsalidou and 
Taylor, 2011; Ashkenazi et al., 2012; Chang et al., 2016; De Smedt et al., 
2011; Houdé et al., 2010; L. Peters and De Smedt, 2018; Rosenberg-Lee 
et al., 2015). Less differentiated representations associated with lower 
math skills were also detected in the fusiform gyrus. The fusiform gyrus 
in the ventral-occipital cortex is involved in high-level visual processing 
of complex visual objects, including words and numbers (Cantlon et al., 
2009; Shum et al., 2013; Vogel et al., 2017). Taken together, this pattern 
of weak neural differentiation of addition and subtraction problems in 
the dorsal (IPS/SPL) and ventral visual stream (fusiform gyrus) is 
consistent with impaired core-systems for representing and manipu
lating numerical quantity, highlighting a less tuned representation of 

these problems in terms of their core features of symbols processing and 
numerosity manipulation. 

Weak differentiation was also observed in the anterior temporal 
cortex, a region crucial for integrating cross-modal semantic informa
tion (L. Chen et al., 2017; Lambon Ralph et al., 2016), and for processing 
abstract concepts (Binney et al., 2016; Hoffman et al., 2015; Rodd et al., 
2010; Sabsevitz et al., 2005). Lesions in the anterior temporal cortex are 
associated with semantic dementia and furthermore specifically with 
deficits in arithmetic problem-solving (Cappelletti et al., 2012; Julien 
et al., 2008). These observations point to aberrant representations in 
brain areas important for processing semantic knowledge in children 
with MLD. 

Children with low math abilities also showed weak differentiation in 
brain regions involved in phonological processing, including the supe
rior temporal sulcus, superior temporal gyrus, and supramarginal gyrus 
(De Smedt et al., 2011; Prado et al., 2014). Differential engagement of 
language-related systems have been reported in relation to distinct 
arithmetical operations, reflecting task and operation-specific speciali
zations (Archibald et al., 2013; De Smedt et al., 2011; Hecht et al., 2001; 
L. Peters and De Smedt, 2018; Prado et al., 2014). Critically, verbal
ization during arithmetic problem-solving has been linked to language 
systems (Zarnhofer et al., 2013). Higher neural representational simi
larity between addition and subtraction problems within 
language-processing regions may therefore stem from similar reliance 
on immature and effortful verbally-mediated strategies for both types of 
arithmetic problems. We suggest that children with low math abilities 
may rely on the same language-based strategies to solve both types of 
problems, consequently resulting in higher neural representational 
similarity, and lower neural differentiation, across the two operations. 

Children with low math abilities also showed higher neural repre
sentational similarity in the anterior insular cortex, a region important 
for cognitive control during cognition in general, and numerical 
problem-solving in particular (Supekar and Menon, 2012). The strength 
of causal signals from the anterior insular cortex to parietal and pre
frontal regions has been associated with better performance during 
arithmetic problem-solving (Supekar and Menon, 2012). Meta-analysis 
of brain imaging studies points to the insula as a region showing a 
consistent profile of deficits in children with low math abilities (Arsa
lidou et al., 2018). Compared to addition problems, subtraction prob
lems require more effortful processing, resulting in different levels of 
cognitive control demands for the two operations (Caviola et al., 2014; 
Hayashi et al., 2000). Our results indicate, for the first time, that chil
dren with low math abilities may not appropriately engage this pre
frontal control region for operation-specific numerical problem-solving. 

In sum, both dimensional and categorical approaches revealed that 
neural patterns associated with the two basic operations were less 
distinct in children with poor math abilities across multiple functional 
brain systems, further supporting the hypothesis of dysfunctions in 
multiple functional brain systems in the neurobiological characteriza
tion of MLD (Fias et al., 2013; Iuculano, 2016). Notably, our findings 
suggest that neural dysfunction in MLD arises not just at the level of 
task-related activation (Iuculano et al., 2015; Rosenberg-Lee et al., 
2015), but also at the level of multivariate pattern representations in 
multiple brain systems (Iuculano, 2016; Iuculano et al., 2015). This 
pattern of enhanced neural representational similarity is consistent with 
hyperactive responses observed in children with MLD (Jolles et al., 
2016; Rosenberg-Lee et al., 2015), and together points to weak 
operation-specific tuning of neural circuits as a putative mechanism of 
poor math abilities in these children. More generally, the distributed 
nature of the deficits uncovered here provides further support for a 
multi-componential deficit model of math difficulties, including MLD 
(Fias et al., 2013; Iuculano, 2016). 
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4.3. Nonlinear, worse-than-expected, profile of weak neural 
representations in children with MLD 

The next aim of our study was to characterize nonlinear profiles of 
neural representations in children integrating dimensional and cate
gorical approaches. While most brain areas showed a continuous linear 
profile of neural representational similarity associated with poor math 
skills, the left anterior temporal cortex and left IPS showed a nonlinear 
profile characterized by a significant negative relation in the MLD group 
and no variation in the TD group (Fig. 4). These results suggest that 
children with MLD show a unique neural profile, characterized by 
weaker than expected differentiation of problem representations in two 
left hemisphere regions important for semantic knowledge of numerical 
operations (Julien et al., 2008) and their manipulation (Cappelletti 
et al., 2012). Our findings identify a novel locus of impairments in 
children with MLD and are noteworthy because they converge on studies 
of patients with semantic dementia (Julien et al., 2008) which have 
suggested that aberrancies in the anterior temporal cortex result in 
difficulty with identifying arithmetic signs as well as conceptual un
derstanding of quantity. 

Our analysis also revealed a worse than expected profile in the 
dorsolateral prefrontal cortex. However, in this case, while the MLD 
group showed a negative relationship between neural representational 
similarity and math abilities, as seen in the parietal-temporal-prefrontal 
areas consistently identified above, this relationship was instead posi
tive in the TD group. This result suggests that children with MLD engage 
the dorsolateral prefrontal cortex differently from TD children, and 
further highlights a dissociation in representations encoded by this brain 
region. Notably, children at the lowest and highest end on the ability 
scale show similar overlap in representations, but for entirely different 
reasons. The dorsolateral prefrontal cortex plays a key role in selective 
manipulation of information in working memory (Barbey et al., 2013; 
Curtis & D’Esposito, 2003). One interpretation of our findings is that 
children with high math abilities engage the dorsolateral prefrontal 
cortex with similar efficiency for both operations, whereas children with 
MLD at the lowest end of the abilities (Fig. 4C) engage this region with a 
similar level of inefficiency for both operations. This interpretation is 
also consistent with previous findings showing that adults with better 
arithmetic skills display higher neural representational similarity be
tween addition and subtraction operations in the dorsolateral prefrontal 
cortex compared to typically-developing children (Chang et al., 2015). 

Together, these results identify brain areas with a nonlinear profile, 
characterized by worse-than-expected aberrations in neural represen
tations, and thus, areas of particular vulnerability in the most severe 
cases of children with poor math skills. 

4.4. Less differentiated neural representations at the network level in 
children with MLD 

The final goal of our study was to characterize network similarity 
across brain regions (Anzellotti and Coutanche, 2018; Pillet et al., 2020) 
showing lower differentiation in neural representational similarity 
values as a function of math abilities. We used a novel computational 
approach to determine multi-region representational similarity patterns, 
and assessed whether these patterns could differentiate children with 
MLD from their TD peers. Analysis of network similarity revealed that 
children with MLD showed higher multi-region representational simi
larity compared to their TD peers, suggesting that less differentiated 
neural representations are manifested not only at the regional level 
(Fig. 3I) but also at the network level (Fig. 5E). Notably, this analysis 
also highlights weaker integration of representations between the fusi
form gyrus and intraparietal sulcus in children with MLD. These brain 
regions are crucial for representing and manipulating numerical quan
tity (Ansari, 2008; Cantlon et al., 2009), and the functional connectivity 
between these two regions has been shown to be associated with the 
successful acquisition of numerical abilities (Battista et al., 2018; Evans 

et al., 2015). In contrast, children with MLD showed higher integration 
of neural representations between the right fusiform and the left anterior 
temporal cortex, likely reflecting the greater need to access semantic 
representations for solving both problem types. More generally, these 
results highlight impairments in co-occurring patterns of deficits across 
multiple brain regions in children with MLD (Fias et al., 2013). 

4.5. A developmental model of operation-specific changes in neural 
representation with age and math skills 

Our findings inform putative developmental models of how distinct 
neural representations may develop across ages and different levels of 
math abilities (Fig. 6). Behavioral studies have characterized distinctive 
strategies used to solve addition and subtraction operations at different 
developmental stages. School-age children apply efficient retrieval 
strategies to solve addition problems 65 % of the time – with lower rates 
in children with poor math abilities – while only 19 % of subtraction 
problems are solved using this strategy by the 3rd grade (Barrouillet 
et al., 2008). Consistent with these behavioral results we found less 
distinct neural representations between addition and subtraction prob
lems children with high math abilities. In contrast, adults solve 76 % of 
addition problems by retrieval and use this strategy during subtraction 
58 % of the time (Campbell and Xue, 2001). These differences in 
retrieval-rates suggest that with development, there is a shift from 
effortful counting to efficient fact retrieval, leading to a convergence of 
problem-solving strategies across the two operations. In this case, we 
would predict increased overlap in neural representations between the 
two operations in adults. Thus, we predict that, paradoxically, children 
with poor math abilities and adults would show similar levels of neural 
representational similarity across distributed frontal, parietal, and 
temporal regions, but for different reasons (Fig. 6). Specifically, in 
children with poor math abilities, similar NRS patterns reflect the use of 
inefficient strategies for both operations, while in proficient adults, 
similar NRS patterns reflect the use of efficient strategies for both op
erations (Chang et al., 2015). Furthermore, our data also hints at the 
possibility that linear versus nonlinear patterns of neural 

Fig. 6. Proposed developmental model of operation-specific shifts in neural 
representations with age and math skills. This model predicts that there is a 
shift from effortful counting to efficient fact retrieval, leading to a convergence 
of problem-solving strategies across the two operations. Therefore, we would 
predict increased overlap in neural representations between the two operations 
in adults. Paradoxically, children with poor math abilities would also show high 
levels of neural representational similarity across distributed frontal, parietal, 
and temporal regions as in adults, but because they tend to use inefficient 
strategies for both operations. 
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representational similarity may reflect different sub-types of math dif
ficulties, such that children following a linear trajectory may be classi
fied as having a developmental delay, while nonlinear profiles may 
reflect more severe forms of math difficulties, including children 
commonly classified as having severe forms of learning disabilities. 
Future studies using longitudinal designs are needed to assess how 
neural representations change over time heterogeneous groups of chil
dren with MLD. 

5. Conclusions 

The present study identifies distinct neural representations as a novel 
neurobiological feature for individual differences in math abilities, and a 
potential neurobiological marker of poor math skills in an inability to 
form distinct neural representations for different numerical operations. 
Less differentiated neural representations for addition and subtraction 
problems associated with poor arithmetic abilities were evident in 
widely-distributed cortical regions related to quantity representations 
and their manipulation, as well as in prefrontal regions involved in 
cognitive control, and those engaged in the semantic and phonological 
aspects of language processing. Our findings identify a novel distributed 
locus of information processing and representational deficits in children 
at the lower end of the distribution of math abilities. Moreover, network- 
level analysis revealed that poor mathematical skills were associated 
with not only less differentiated representations at the regional level but 
also with manifested overlapping representations at the network level. 
Critically, the present study is the first to show that failure to properly 
differentiate between arithmetical problem-types may be a hallmark of 
math difficulties. Notably, lack of representational differentiation was 
not evident in perceptual, but rather in cognitive-semantic processing 
brain systems. The approach and methods developed here may be useful 
for future studies of neural representational features in other learning 
disabilities, such as developmental dyslexia. Finally, our approach 
provides a template for probing typical and atypical developmental 
changes associated with cognitive problem-solving and skill acquisition, 
overcoming pitfalls associated with use of arbitrary cutoffs for probing 
neurobehavioral profiles of heterogeneity in learning disabilities. 
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