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Abstract 

Patients with Parkinson’s disease are impaired at incremental reward-based learning. It is typically 

assumed that this impairment reflects a loss of striatal dopamine. However, many open questions 

remain about the nature of reward-based learning deficits in Parkinson’s. Recent studies have 
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found that a combination of different cognitive and computational strategies contribute even to 

simple reward-based learning tasks, suggesting a possible role for episodic memory. These 

findings raise critical questions about how incremental learning and episodic memory interact to 

support learning from past experience and what their relative contributions are to impaired 

decision-making in Parkinson’s disease. Here we addressed these questions by asking patients with 

Parkinson’s disease (n=26) both on and off their dopamine replacement medication and age- and 

education-matched healthy controls (n=26) to complete a task designed to isolate the contributions 

of incremental learning and episodic memory to reward-based learning and decision-making. We 

found that Parkinson's patients performed as well as healthy controls when using episodic memory, 

but were impaired at incremental reward-based learning. Dopamine replacement medication 

remediated this deficit while enhancing subsequent episodic memory for the value of 

motivationally relevant stimuli. These results demonstrate that Parkinson's patients are impaired 

at learning about reward from trial-and-error when episodic memory is properly controlled for, 

and that learning based on the value of single experiences remains intact in patients with 

Parkinson’s disease.   

Introduction 

The striatum and its dopaminergic inputs are thought to support a specialized circuit for 

incremental reward-based learning.1,2 It is commonly thought that this is the cause of learning 

deficits in patients with Parkinson’s disease (PD). Indeed, PD is characterized by a loss of striatal 

dopamine and PD patients have been shown to be impaired at incremental reward learning.3–6 

However, recent findings call this simple explanation for learning deficits in PD into question, 

revealing that incremental learning involves a multitude of cognitive and computational 

strategies.7,8 Thus, open questions remain about the nature of learning deficits in PD and their 

attribution to different cognitive and computational systems.   

In particular, recent work has demonstrated that tasks typically thought to measure incremental 

learning may instead depend on memory for one-shot events, referred to as “episodic memory”.9–

11 This may be especially relevant for understanding learning deficits in PD, because some studies 

have shown that PD patients present with deficits in episodic memory.12–18 This raises the question: 

what are the relative contributions of episodic memory and incremental learning to impaired 
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reward-based learning in PD? Characterizing the relationship between these systems remains an 

important goal for understanding the exact nature of PD patients’ reward learning deficits, and for 

understanding the role of striatal dopamine in learning from past experience more broadly. 

Incremental learning and episodic memory are classically understood as two separate learning 

systems with distinct neural substrates. Incremental learning depends on reward prediction errors 

encoded by phasic dopamine, which aid in the formation of stimulus-action associations in the 

striatum.2 Computational modeling suggests that this type of learning depends on summarizing 

past experiences with a running average, providing a mechanism for evaluating actions without 

needing to maintain individual memory traces.1,19,20 In contrast, episodic memory supports the 

encoding and retrieval of single experiences and largely depends upon independent neural 

circuitry, including the hippocampus.9–11,21–27 

Understanding how these systems each contribute to performance on reward-based learning and 

decision tasks has been challenging, in part because typical experiments only measure one type of 

behavior. In particular, most tasks require participants to choose between a set of repeated and 

often highly familiar options. This approach is well-suited for measuring incremental learning but 

offers no way to test whether individual events are referenced during choice. Recent experimental 

approaches have offered a more sophisticated way to measure both forms of learning by 

associating unique cues with each option, allowing for direct measures of the role of episodic 

memory in reward-based learning.10,11,24,25,28 Importantly, such studies have revealed that tasks 

that may appear at first glance to depend only on incremental learning instead also depend 

substantially on  episodic memory. 

Could it be then that episodic memory impairments may also contribute to learning deficits in PD? 

It is typically assumed that patients with PD are primarily impaired at incremental learning from 

feedback, due to dysfunction in striatal reward signals. However, recent results have complicated 

this interpretation in a number of ways. First, some studies have found that incremental reward 

learning is sometimes preserved in PD patients.31,32 Second, studies in healthy adults have reported 

a relationship between BOLD activity in the striatum and episodic retrieval.18,27,37–42 These 

findings suggest that patients with PD may have episodic memory impairment. Indeed, some 

studies in PD have shown that patients have deficits in episodic recall,12–17 although the evidence 

is mixed, with others finding little-to-no issues.33–36 Together, these findings suggest that there 
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could be some shared dependence of episodic memory and incremental learning on striatal 

dopamine. Yet because most tasks in PD patients measure only episodic memory or incremental 

learning alone, it is currently unclear whether either system, or even both, is responsible for these 

deficits. The involvement of episodic memory in reward-based learning, and the possibility of its 

disruption, makes disentangling its unique contributions from those of incremental learning critical 

to our understanding of learning deficits in PD. 

Here, our goal was to address this gap by determining the extent to which PD patients use either 

incremental learning or episodic memory to guide reward-based learning. We used an 

experimental task that was designed to provide clear behavioral measures of participants’ use of 

either of these strategies (Figure 1).25 PD patients (N=26) completed this task while on- or off-

dopamine replacement medication. Their performance was compared to a group of matched 

healthy controls. Following the task, both groups were given a subsequent memory test. This 

design allowed us to determine whether PD patients were impaired at using either incremental 

learning or episodic memory to guide reward-based learning, and whether dopamine replacement 

remediated any deficits.  

We aimed to test three hypotheses. Patients could be impaired at either: 

(i) Incremental learning alone. This would be expected if a lack of striatal dopamine results 

in dysfunctional reward prediction error with no effect on episodic memory. 

(ii) Episodic memory alone. This would be expected if prior tasks have mischaracterized 

episodic retrieval deficits as incremental learning deficits. 

(iii) Both systems simultaneously. This would be expected if there is shared dependence on 

striatal dopamine by both systems. 

Finally, we also asked whether dopamine replacement had any impact on episodic memory 

formation by examining patients’ memory for individual events following reward learning. 

Materials and Methods 

Participants: PD patients and healthy controls 
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Twenty-six patients with PD (aged 50-80; 34% women) were recruited from the Columbia 

University Neurological Institute, the Columbia University Recruit Me subject pool, or the 

Michael J Fox Foundation Trial Finder website. Twenty-six healthy controls (HC; aged 50-80; 

53% women) were also recruited from the local community. Patients were age and education 

matched with healthy controls (there were no significant differences between groups on these 

variables) and had no history of other neurological diseases besides PD and no major active 

psychiatric disorders. Patients were all in the mild-to-moderate disease stage: mean UPDRS off 

27.43 ± 9.78, as examined by a movement disorders neurologist; disease duration 2-14 years 

(Table 1). Patients were being treated with carbidopa/levodopa for at least one year prior to testing 

and were responsive to their dopaminergic medication. While our sample included more men than 

women in the PD group compared to healthy controls, this was unsurprising given the higher 

prevalence of PD in men. Informed consent was obtained with approval from the Columbia 

University Institutional Review Board. 

Table 1. Demographic and clinical characteristics of participants. 
  

Healthy controls 
 

Parkinson’s patients 
 

P-value (FDR-corrected) 
Age (years) 65.84 66.11 1.0 

Sex (% female) 53 34 1.0 

Education (years) 16.38 17.41 0.513 

MoCA 28.23 29 0.391 

Geriatric Depression Scale 3.39 6.98 0.117 

Starkstein Apathy Scale 5.73 9.65 0.029 

Digit Span forwarda 11.80 12.69 0.537 

Digit Span backward 7.88 7.88 1.0 

Digit Span forward (off) -- 12.69 0.537 

Digit Span backward (off) -- 7.84 1.0 

UPDRS off -- 27.03 -- 

UPDRS onb -- 18.46 -- 

Disease duration (years) -- 6.657 -- 

Table shows mean values. MoCA = Montreal Cognitive Assessment; UPDRS = Unified Parkinson’s Disease Rating Scale—Part III. 
aFirst two digit span rows indicate scores for Parkinson’s patients on medication 
bUPDRS on was significantly lower than UPDRS off (p < 0.001) 
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Procedure 

Before the experimental task, all participants completed a neuropsychological battery lasting 

approximately 30 minutes comprised of the Montreal Cognitive Assessment (MoCA), geriatric 

depression scale (GDS), digit forward and backward span, and the Starkstein apathy scale. This 

battery was selected based on the current understanding of PD non-motor symptoms, which can 

include depression, executive function, and apathy. Participants with mild cognitive impairment 

or dementia as indicated by a MOCA score less than 26 were not included in the study. 

PD patients performed the experiments in 2 sessions that were between 1-7 days apart, once on-

medication, once off-medication. The order of the on and off sessions was counterbalanced across 

patients. For the on-medication session, patients took their medication 1–1.5 hours before 

behavioral testing. For the off-medication session, patients withdrew from their medication 

overnight (at least 12 hours for levodopa/carbidopa and at least 24 hours for dopamine agonists). 

All participants performed several tasks in each session, counterbalanced in order. 

Tasks 

The primary task was developed by our lab to measure the relative contributions of incremental 

learning and episodic memory to value-based decisions (Figure 1).24,25 On each trial, participants 

were presented with two decks of cards (red and blue) and had 2 seconds to choose between them 

(using either the “j” or “k” keys). They were then shown the outcome of their choice (i.e., the 

selected card's value) for 1.5 seconds, followed by a 1 second intertrial interval. Each card's value 

was between $0 and $1 with $0.20 increments. Deck position on the screen (left or right) was 

counterbalanced, and participants completed 150 trials in total. 
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Figure 1. Design of the experiment. A) Participants completed two tasks in succession. The first was the 
memory-based decision-making task. Participants chose between two colored cards and received an 
outcome following each choice. One color was worth more on average at any given timepoint and this 
mapping changed periodically. Each card also displayed a trial-unique object, and cards that were chosen 
could appear a second time in the task after 9-30 trials. If a card re-appeared, it was worth the same amount, 
which allowed participants to use episodic memory for individual cards in addition to learning deck value 
from feedback. Outcomes ranged from $0 to $1 in increments of 20¢. Participants then completed a 
subsequent memory task for objects that may have been seen in the memory-based decision-making task. 
Participants had to indicate whether they recognized an object and, if they did, whether they chose that 
object. If they responded that they had chosen the object they were then asked if they remembered the value 
of that object. B) Participants completed 150 trials, with the higher value deck alternating periodically 
(every 10-24 trials), as indicated by the shaded background. Lines indicate an example of tracking the value 
of each deck according to outcomes received for a single participant. 
 
Participants were made aware that one deck color had a higher expected value at any given time 

and was therefore the “lucky” deck (i.e., 𝑉!"#$% = $0.63, 𝑉"&!"#$% = $0.37). Importantly, the 

currently lucky deck reversed frequently throughout the task (every 16-24 trials), requiring 

participants to use each deck’s recent reward history to determine the identity of the lucky deck. 

Each card within a deck featured an image of a trial-unique object which varied on each trial, and 

A
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a subset of chosen images (60%) appeared once more throughout the task. This allowed 

participants to use episodic memory for an individual image: Participants were told that if they 

encountered a specific image on a card a second time, it would be worth the same as when the card 

with that image was first chosen, regardless of whether its deck color was currently lucky or not.  

The repeated cards appeared 9-30 trials after the first presentation and were worth the same amount 

as the first time they were chosen. Objects were sampled using a procedure designed to prevent 

each deck’s expected value from becoming skewed by choice to minimize the correlation between 

the expected value of previously seen cards and deck expected value and ensure that choosing a 

previously selected card remained close to 50¢ (the sampling procedure is described in previous 

publications24,25).  

Following completion of the decision-making task, participants underwent a memory test for a 

subset of the trial-unique objects. The memory test followed a 5-10 minute delay during which 

instructions and practice trials were completed. For each trial of the memory test, an object was 

first displayed on the screen and participants were asked whether they had previously seen the 

object and were given five response options: Definitely New, Probably New, Don’t Know, 

Probably Old, Definitely Old. If the participant reported that they had not seen the object before 

or did not know, they moved on to the next trial. If they reported that they had seen the object 

before, they were then asked if they had chosen the object or not. Lastly, if they responded that 

they had chosen the object, they were asked what the value of that object was (with options 

spanning each of the six possible object values between $0-1). Participants completed up to 99 

such trials in total.  

Analyses 

To quantify estimates of incrementally constructed value in the memory-based decision-making 

task, we modeled learning about deck value using a modified Rescorla-Wagner20 model. This 

model assumes that each participant’s stored expected value, Q, for each deck, d, is first updated 

on each trial, t, via a prediction error, δt, representing the difference between the expected and 

received outcome (Rt), weighted by a learning rate α: 

𝑄'()(𝑑) = 	𝑄'(𝑑) + 	𝛼𝛿' (1) 

𝛿' =	𝑅' − 𝑄'(𝑑) (2) 
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And is not updated if a different option is chosen: 

𝑄'()(𝑑) = 	𝑄'(𝑑) (3) 

Outcomes were centered to lie between -0.5 and 0.5. To quantify the influence of episodic memory 

on decision-making, we included the object value for trials featuring previously seen objects trials 

(OldValue; coded to range from 0.5 if the value was $1 on the red deck or $0 on the blue deck to 

–0.5 if the value was $0 on the red deck and $1 on the blue deck) in a sigmoid choice function 

alongside deck expected value. We additionally accounted for other potential influences on choice 

by including 1) “familiarity” (Fam) as a binary variable indicating whether a choice included 

(coded as 0.5) or did not include (coded as -0.5) a previously seen object on one of the two decks, 

2) “perseveration” (Perse) as a binary variable used to capture any bias toward repeating a previous 

choice independent of reward outcome (coded as 0.5 if a choice was repeated and -0.5 if it was 

not), and 3) an intercept representing a baseline bias toward either color of deck. A vector of five 

inverse temperature parameters was included to model these effects for each participant: a deck 

color bias 𝛽*, an effect of expected deck value 𝛽), an effect of episodic object value 𝛽+, an effect 

of familiarity bias 𝛽,, and an effect of perseveration bias 𝛽-. These inverse temperatures were used 

to model the probability of choosing the red deck: 

𝜎(𝑥) = )
)(.!"

   (4) 

𝑃(𝑐ℎ𝑜𝑜𝑠𝑒	𝑟𝑒𝑑) = 𝜎(𝛽! + 𝛽"(𝑄#(𝑟𝑒𝑑) − 𝑄#(𝑏𝑙𝑢𝑒))	 + 𝛽$𝑂𝑙𝑑𝑉𝑎𝑙𝑢𝑒#	 + 		𝛽%𝐹𝑎𝑚# + 	𝛽&𝑃𝑒𝑟𝑠𝑒#)  (5) 

Hierarchical Bayesian inference was used to fit parameters for individual participants within each 

group in order to pool uncertainty across the entire sample and aid in identifiability45. Learning 

rate and inverse temperature parameters for each participant, s, were sampled from two group-

level distributions. Participant-level learning rates 𝛼/ were drawn from a Beta distribution with 

group shape parameters 𝑎) and 𝑎+: 

𝛼/	~	𝐵𝑒𝑡𝑎(𝛼), 𝛼+)  (6) 

Participant-level 𝛽/ vectors of inverse temperature coefficients were drawn from a multivariate 

normal distribution with group-level means 𝛽0	and cross-participant covariance parameterized 

with standard deviations 𝜏 and correlation matrix Ω: 
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𝛽/ ∼ 𝒩(𝛽0, 𝑑𝑖𝑎𝑔(𝜏) × Ω × 𝑑𝑖𝑎𝑔(𝜏))  (7) 

where 𝑑𝑖𝑎𝑔(𝜏) is a square diagonal matrix with the elements of 𝜏 on the diagonal. Group-level 

parameters were drawn from the following hyperprior distributions to regularize estimation: 

𝑎) ∼ 𝐶𝑎𝑢𝑐ℎ𝑦((0,5)    (8) 

𝑎+ ∼ 𝐶𝑎𝑢𝑐ℎ𝑦((0,5)    (9) 

𝛽0 ∼ 𝒩(0,5)              (10) 

𝜏 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦((0,2.5)   (11) 

Ω ∼ 𝐿𝐾𝐽(2)                (12) 

The joint posterior distribution for all parameters was sampled using Hamiltonian Markov Chain 

Monte Carlo (MCMC) with No-U-Turn Sampling46, as implemented in Stan47, using 4 chains with 

4000 samples (2000 discarded as burn-in). Chain convergence was assessed by ensuring that all 

Gelman-Rubin statistics were close to 1. We compared models that included only incremental or 

episodic value in the choice function with those incorporating both sources of value using leave-

one-out cross-validation estimated using Pareto-smoothed importance sampling48. The expected 

log pointwise predictive density (ELPD) was then computed as a measure of estimated out-of-

sample predictive fit for each model. Effects are reported throughout as the mean of the posterior 

estimate alongside 95% credible intervals. Separate models were fit for each group (PD on 

medication, PD off medication, and healthy controls). Fit parameters were compared across groups 

using paired samples t-tests such that each patient was matched with themselves (on versus off-

medication) and with independent t-tests to compare with age- and education-matched healthy 

controls (HC v. PD on-medication and HC v. PD off-medication). Multiple comparisons were 

accounted for in these matched sample analyses using the FDR correction, and adjusted q-values 

are reported throughout. 

To analyze learning rates for each group, we initially determined the optimal learning rate for each 

participant’s individual sequence of outcomes using the following procedure. First, we conducted 

a grid search of learning rates (in units of 0.01 between 0 and 1) for each participant by i) 

simulating Q values for each participant, ii) computing the mean square error between the resulting 
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sequence of Q values and whether each deck was currently lucky or not according to the task 

design, and iii) determining which learning rate minimized the mean square error. We then 

subtracted each participant’s optimal learning rate from their fit learning rate. These difference 

scores were then used as the outcome variable in simple linear regressions, estimated using 

rstanarm for each group, with an intercept as predictor in order to assess whether, at the group 

level, learning rates were different from optimal or not. Between group differences were then 

assessed using paired- (on v. off-medication) and independent- (HC v PD on-medication and HC 

v. PD off-medication) sample t-tests with an FDR correction for multiple comparisons. 

Finally, we assessed subsequent memory performance for each group separately. Recognition 

memory was measured using the signal detection metric 𝑑′, whereas value memory was assessed 

as participants’ accuracy at recalling the true value of a previously seen object. Group-level effects 

were determined by simple linear regressions, again estimated using rstanarm, with either 𝑑′ or 

value accuracy as the outcome variable and an intercept as predictor in order to assess differences 

from chance. 𝑑′ was measured as the difference in z scored hit rate and false alarm rate for each 

participant, adjusted for extreme proportions using a log-linear rule49, and value memory accuracy 

was corrected for chance performance (accuracy - 1/6). An additional mixed effects logistic 

regression was used to test for an effect of the true value of previously seen objects on value 

memory accuracy. For this analysis, we subtracted the absolute value of 0.5 from an object’s true 

value and used this as the primary fixed effect alongside random slopes that varied for each 

participant. We chose to analyze the data in this way rather than as a quadratic effect of an object’s 

true value because, due to the conditional nature of this response, not all subjects had trials for 

every individual value, and this procedure ensured that there were adequate trials in each value bin 

to estimate an effect. Between group differences in 𝑑′, value memory accuracy, and the random 

slopes capturing the effect of object value on value memory accuracy for each participant were 

then assessed using paired- (on v. off-medication) and independent- (HC v PD on-medication and 

HC v. PD off-medication) sample t-tests with an FDR correction for multiple comparisons. This 

method was also used to assess between group differences in median reaction times as well as 

forward and backwards digit span scores. One patient (and their matched healthy control) was 

excluded from all subsequent memory analyses due to a lack of responses, and a second patient 

(and their matched healthy control) was excluded from only value memory analyses due to a lack 

of responses on these trials specifically. 
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For the computational model and regression analyses, fixed effects are reported in the text as the 

mean of each parameter’s marginal posterior distribution alongside 95% credible intervals, which 

indicate where 95% of the posterior density falls. Given the data and model, the probability of 

parameter values outside of this range is less than 0.05. 

Data availability 

The data used in this study are available upon request from the corresponding author. 

Results 

Choices are best explained by a model featuring both incremental and 

episodic value 

To assess whether participants’ responses were based on episodic memory or incremental learning, 

we fit a reinforcement learning model featuring separate inverse temperature parameters for 

model-estimated deck value and the true value of previously seen objects (see Methods). 

Additional predictors were included to capture any potential confounding biases in choice, such as 

a bias toward one deck color over the other, a bias toward selecting previously seen objects 

regardless of their value, and a perseveration bias. In this model, deck value represents 

personalized trial-by-trial estimates of each participant’s valuation of either deck over the course 

of the experiment and reflects the outcome of incremental value updating. By contrast, 

remembered object values were simply included as the previously experienced outcome, as 

participants had only one relevant past experience with an object for decisions of this type. We 

compared the ability of this combined reinforcement learning model to predict choices with models 

that included only either estimated deck value or episodic value, rather than both sources.  

We found that for all groups (patients on- and off-medication and healthy controls), the combined 

model yielded the best estimated out-of-sample predictive performance (see Methods and 

Supplemental Figure 1A-B), indicating that all groups used a combination of incremental 

learning and episodic memory in their choices. 

We next sought to examine the degree to which each group’s choices could be explained by either 

of these strategies, separately. We compared the performance of the two models, each of which 
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based decisions on either incremental learning or episodic memory alone. Importantly, while 

episodic memory was not an available strategy on all trials, participants always had the option to 

base decisions on incrementally learned deck value. We therefore predicted that the incremental 

learning-based choice model should outperform the episodic memory-based choice model if 

participants engaged in incremental learning throughout the task. This was the case for healthy 

controls (expected log pointwise predictive density M=-216.723, SE=22.449; Supplemental 

Figure 1C) and for PD patients on-medication (M=-98.695, SE=20.282) but was not found for PD 

patients off-medication (M=-7.458, SE=17.704), indicating that behavior in the PD off group was 

not consistent with incremental learning. Together, these results suggest that while all groups used 

both sources of value to some extent, the behavior of PD patients off dopaminergic replacement 

medication was less consistent with an incremental learning strategy. 

Dopamine depletion decreases incremental learning but not episodic 

memory for choice 

The model comparisons provide initial evidence that dopamine depletion in Parkinson’s Disease 

selectively impairs incremental learning. Next, we moved to investigate the parameters governing 

participants’ individual choices to further characterize this pattern. We first examined the extent 

to which deck decisions were well explained by estimated deck value, which provided a subject-

specific predictor of incremental learning and tracked well with the reversal structure of the task 

(Supplemental Figure 2). While deck value predicted choices made by all groups to some extent 

(HC: βdeckvalue = 3.59, 95% CI = [2.258, 4.993]; PD on: βdeckvalue = 2.765, 95% CI = [1.318, 4.163]; 

PD off: βdeckvalue = 1.248, 95% CI = [0.559, 2.099]; Figure 2 and 3A, Supplemental Table 2), PD 

patients off-medication made less use of deck value than both healthy controls (t(25)=7.685, 

p<0.0001, FDR corrected) and when they were administered their dopamine replacement 

medication (t(25)=-9.076, p<0.0001, FDR corrected). Patients on-medication also performed 

similarly to healthy controls, with no significant difference in sensitivity to deck value between 

the on-medication and healthy control groups (t(25)=2.521, p=0.149, FDR corrected). Critically, 

these results indicate that dopamine depletion impaired patients’ ability to learn about reward from 

trial-and-error and use this information to inform their decisions. Further, they suggest that 

incremental learning was improved when patients were tested on their dopaminergic medication. 
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Figure 2. Memory-based decision-making task performance for all groups. A) Left: Deck learning 
performance for healthy controls, as indicated by the proportion of trials on which the red deck was chosen 
as a function of the difference between estimated value (Q) of the two decks. Right: Use of episodic value 
in decisions for healthy controls, as indicated by the proportion of trials featuring a previously seen (old) 
object on which the old object was chosen as a function of its value. The same is shown for Parkinson’s 
patients on (B) and off (C) medication. In all plots, each line indicates the fit of a logistic regression model 
to the raw data with bands representing 95% confidence intervals around this fit. Filled points represent the 
group average over binned data with 95% confidence intervals. 
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We next asked whether dopamine depletion had any impact on patients’ use of episodic memory. 

Specifically, if all patients were performing well, and the off-medication patients were not as 

effective at using an incremental learning strategy, were they instead relying on episodic memory? 

To answer this question, we examined whether decisions on trials featuring a previously seen 

object were well explained by that object’s value, which provided a measure of episodic memory 

use throughout the task. Object value predicted choices made by all groups (HC: βoldvalue = 0.559, 

95% CI = [0.139, 1.027]; PD on: βoldvalue = 0.516, 95% CI = [0.017, 1.043]; PD off: βoldvalue = 0.657, 

95% CI = [0.149, 1.191]; Figure 2 and 3B), and there were no differences between patients on or 

off their medication and healthy controls (HC v. PD off: t(25)=-0.733, p=1.0, FDR corrected; HC 

v. PD on: t(25)=0.266, p=1.0, FDR corrected; PD on v. PD off: t(25)=0.953, p=1.0, FDR 

corrected). In addition to sensitivity to object value, we also observed that participants’ choices 

tended to be biased by previously seen objects regardless of their value. This bias was similarly 

predictive of choice across all groups (HC: βoldbias = 0.773, 95% CI = [0.348, 1.214]; PD on: βoldbias 

= 1.133, 95% CI = [0.87, 1.396]; PD off: βoldbias = 1.121, 95% CI = [0.622, 1.646])  and there was 

no significant difference between patients on or off their medication and healthy controls (HC v 

PD off: t(25)=-1.561, p=0.776, FDR corrected; HC v. PD on: t(25)=-2.560, p=0.149, FDR 

corrected; PD on v. PD off: t(25)=-0.041, p=1.0, FDR corrected). Together, these results indicate 

that while PD patients off-medication engaged in less incremental learning, their use of episodic 

memory remained unaltered. Further, administering dopamine replacement medication had very 

little impact on episodic memory usage. 

Dopamine remediates a suboptimal rate of incremental learning in 

PD patients 

Having established that dopamine depletion selectively impairs incremental learning in our task, 

we next moved to better characterize the nature of this deficit by examining the learning rate 

parameter of our combined reinforcement learning model. In incremental learning models of this 

type, which employ a Rescorla-Wagner update, the learning rate is responsible for controlling the 

magnitude to which reward prediction errors on each trial override the previously stored value for 

each eligible cue. Higher learning rates effectively amount to larger exponential discounting of 

past rewards. Critically, the optimal learning rate for a task is dependent on that task’s volatility—

when change is more frequent, a higher learning rate is more optimal50–52. Achieving an optimal 
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learning rate is possible, and desirable, only if reward prediction errors remain intact, as this is the 

signal over which the learning rate operates. We therefore hypothesized that if dopamine depletion 

impairs reward prediction error signaling in PD patients off-medication, then their learning rate 

should be suboptimal relative to patients on-medication. 

Figure 3. Reinforcement learning model results. To capture behavior in on the memory-based decision-
making task, we fit a reinforcement learning model that incorporated both incremental and episodic value, 
as well as several other biases (see Methods), into its decisions. A) Inverse temperature (Beta) parameters 
captured sensitivity to estimated deck value. Healthy controls (in purple) and PD patients on medication (in 
dark blue) were more sensitive to deck value than PD patients off medication (in light blue). B) Further 
inverse temperature (Beta) parameters captured two influences on decisions related to episodic memory. 
The inverse temperature for old value captured sensitivity to a previously seen object’s value, whereas that 
for old bias captured participants’ tendency to choose previously seen objects regardless of their value, 
which was a form of recognition memory bias. Filled points represent group-level mean parameter estimates 
with 95% confidence intervals and empty points represent individual parameter estimates. C) Learning rate 
estimates for each group from the combined reinforcement learning model. PD patients off medication had 
higher learning rates than patients on medication, but not healthy controls. Further, PD patients off 
medication were the only group with a learning rate that was different from the optimal learning rate (dotted 
lines), and the extent of this suboptimality was again greater than for patients on medication, but not healthy 
controls. Filled points represent group level average learning rate estimates, empty points represent 
individual subject estimates, and error bars represent 95% confidence intervals. 
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In support of this idea, patients tested off- vs. on-dopaminergic medication significantly differed 

in their learning rates (t(25)=3.533, p=0.009, FDR corrected; Figure 3C, Supplemental Table 2). 

To gain more insight into the nature of this difference, we next examined whether each group’s 

learning rates differed from the learning rate that was optimal in the present task. When tested off-

medication, patients updated faster than was optimal (M = 0.207, 95% CI  = [0.120, 0.294]). When 

tested on- medication, however, patients learned at an optimal rate (M = 0.002, 95% CI = [-0.136, 

0.135]), and did so significantly more than when they were tested off-medication (t(25)=3.131, 

p=0.024, FDR corrected). This result suggests that restoring reward prediction error signaling 

allowed patients to set their learning rate to a level that was more optimal. Separately, while at the 

group-level healthy controls also learned at an optimal rate (M = 0.074, 95% CI = [-0.098, 0.241]), 

there was a large degree of variability across individuals and their overall learning rates were not 

different from patients off- (t(25)=-1.776, p=0.225, FDR corrected) or on-medication 

(t(25)=0.556, p=1.0, FDR corrected). Together, these results suggest that achieving an optimal rate 

of incremental learning is aided by the presence of phasic dopamine. 

Dopamine enhances subsequent memory for extreme values with 

little effect on recognition memory 

Following the memory-based decision-making task, we immediately tested participants’ ability to 

recall a subset of the trial-unique objects (Figure 1A). Subsequent memory was assessed in two 

ways. First, we asked participants to identify whether or not they recognized objects from the prior 

task. Second, if they indicated that they both recognized and had chosen an object, we asked 

participants whether they remembered its value. This task provided us with an opportunity to 

further probe any potential differences in episodic memory formation due to the presence or 

absence of dopamine in PD patients. 

All groups recognized previously seen objects well above chance (HC: βintercept = 1.400, 95% CI = 

[1.061, 1.749]; PD on: βintercept = 1.187, 95% CI = [0.915, 1.462]; PD off: βintercept = 1.377; 95% CI 

= [1.017, 1.739]; Figure 4). There were also no differences between the groups (HC v. PD off: 

t(24)=0.072, p=1.0, FDR corrected; HC v. PD on: t(24)=0.982, p=0.910, FDR corrected; PD on v. 

off: t(24)=1.317, p=0.910, FDR corrected). These results suggest that dopamine played little-to-

no role in recognition memory for individual object stimuli. 
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Figure 4. Subsequent memory task performance for all groups. A) Left: Recognition memory 
performance on the subsequent memory task as captured by the signal detection metric dprime for healthy 
controls. Middle: Value memory performance visualized here as the relationship between healthy controls’ 
memory for object value and an object’s true value. Right: Value memory performance visualized the 
relationship between accuracy (whether the correct value was remembered or not) and an object’s true 
value. The same is shown for Parkinson’s patients on (B) and off (C) medication. For the left panel, filled 
points represent the group average with a 95% confidence interval and empty points represent individual 
participant means. For the middle and right panels, filled points represent the group average over binned 
data with 95% confidence intervals and each solid line with bands indicates the fit of regression models to 
the raw data with bands representing 95% confidence intervals around this fit. 
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We further probed participants’ ability to remember the value associated with objects that were 

both recognized and chosen. Because this requires a more discerning response about associations 

and actions, we reasoned that accurate value memory was likely indicative of more episodic-like 

subsequent memory than the test of recognition memory alone. We first assessed whether 

participants were able to recall the value of chosen objects above chance. While patients both on- 

(βintercept = 0.156, 95% CI = [0.047, 0.264]; Figure 4) and off-medication (βintercept = 0.153, 95% 

CI = [0.067, 0.237]), were indeed able to recall object value, controls were no different from 

chance (βintercept = 0.092, 95% CI = [-0.011, 0.196]). While one interpretation of this result was that 

healthy controls may have a lower quality of memory for value overall, there were no differences 

between healthy controls and patients when we compared between groups (HC v PD off: t(23)=-

0.971, p=1.0, FDR corrected; HC v PD on: t(23)=-0.907, p=1.0, FDR corrected; PD on v PD off: 

t(23)=-0.046, p=1.0, FDR corrected). 

We next asked whether the value of each object mattered for memory, given that dopamine is 

thought to prioritize memories associated with motivationally significant events36,53–55. Here we 

reasoned that the value of objects that were more motivationally relevant for choice (i.e., those 

with more extreme value) would be better remembered, and that the presence or absence of 

dopamine would modulate this effect. We indeed found that PD patients tested on dopamine 

replacement had greater recall of object value for objects with more extreme value (βvalue = 0.548, 

95% CI = [0.069, 1.118]), and that this effect was absent when patients were off-medication (βvalue 

= 0.111, 95% CI = [-0.195, 0.424]; PD on v. PD off: t(23)=-5.486, p<0.0001, FDR corrected). 

While healthy controls also did not demonstrate this modulation of value memory by motivational 

significance at the group-level (βvalue = 0.393, 95% CI = [-0.138, 0.952]), there was no difference 

in this effect when healthy controls were compared to PD patients on-medication (t(23)=-1.664, 

p=0.110, FDR corrected). Healthy controls also had better value memory relative to PD patients-

off medication (t(23)=14.121, p<0.0001, FDR corrected). Overall, these results suggest that while 

the presence or absence of dopamine had little effect on episodic memory capacity when tested 

with either a simple recognition memory test or a test for associated value memories, dopamine 

leads to the selective prioritization of motivationally relevant value information in memory. 

Controlling for effects of motor deficits and other cognitive and 

psychiatric variables 
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To confirm that differences reported here for PD patients were not due to general motor 

impairment caused by PD, we also assessed the relationship between motor symptoms, as 

measured by UPDRS, and sensitivity to incrementally learned value. There was no correlation 

between the UPDRS scores of PD patients and task performance (Supplemental Table 1). To 

better isolate effects of improvement due to dopamine, we also examined the relationship between 

each patient’s difference in UPDRS scores (on – off medication) and incremental value sensitivity 

(on – off medication), and found no correlation (r=0.201; p=0.325). Lastly, PD patients off-

medication and healthy controls demonstrated no differences in reaction time on the memory-

based decision-making task (t(25)=-0.995, p=1.0, FDR corrected), suggesting that any behavioral 

differences reported here cannot be attributed to slower motoric responses in PD patients. 

Finally, all participants completed a battery of cognitive and psychiatric assessments including the 

MOCA, forwards and backwards digit span tasks, and the GDS and Starkstein apathy scale (see 

Methods). All participants had a MOCA score >=26 indicating no cognitive impairment and there 

was no difference between HC and PD patients in MOCA scores or digit span performance (Table 

1). It is therefore unlikely that the differences observed in the present study were due to overall 

differences in cognitive or working memory impairment. While PD patients had greater apathy 

scores than healthy controls, as has been reported previously56 (Table 1), apathy was not related 

to incremental learning sensitivity. Furthermore, none of the cognitive, psychiatric, or 

demographic variables we collected were significantly correlated with any of the learning and 

memory measures in the task (Supplemental Table 1). 

Discussion 

The majority of studies on reward-based learning have focused on how people update an option’s 

value gradually over time. However, the extent to which learning and decisions are based instead 

on single past encounters has been a primary focus of much recent work.9–11,23,24,26 While 

computational theory has suggested that individual events may be particularly useful when 

experience with a task is limited,29,57 experimental studies have demonstrated that they are relied 

upon even throughout tasks that can be solved normatively with incremental learning alone.9–11 

This suggests that information encoded in a single shot with episodic memory is commonly 

recruited for reward-based learning and decision-making. One prevailing hypothesis is that 
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episodic memory is needed specifically for decisions based on individual events rather than those 

based on incrementally constructed summaries over many events. However, this dissociation has 

yet to be shown empirically. Studying PD patients, who are known to be impaired at learning from 

feedback due to loss of striatal dopamine,5,58,59 provides an avenue for investigating this 

dissociation. Using a task that separately measured the contributions of episodic memory and 

incremental learning to decisions, we found that PD patients were able to base their choices on 

single experiences but were impaired at choosing based on incremental learning. Furthermore, PD 

patients’ subsequent episodic memory for individual events remained intact following decision-

making. Our findings therefore suggest that reward-based learning, when it relies upon episodic 

memory, can occur in the absence of dopamine-replacement medication in PD. They further 

demonstrate that when contributions from episodic memory are properly controlled for, PD 

patients remain impaired at reward learning from trial-and-error. 

The medial temporal lobe (MTL), and particularly the hippocampus, may instead support reward-

based learning that relies upon episodic memory. Indeed, while countless studies have 

demonstrated that the MTL is unequivocally necessary for episodic memory,60,61 it has also been 

shown that the MTL is recruited for decisions to which episodic memory may contribute.21,22,62 

There is further evidence that the MTL plays an important role in both value-based decision-

making and learning from feedback. First, patients with MTL damage show less consistent value-

based choices when compared to healthy controls,21,22 and it has been demonstrated that BOLD 

activity in the hippocampus increases when deliberation between choice options takes more time.21 

Second, neurons in the hippocampus code for rewarding outcomes throughout learning.63–65 In 

humans, evidence from both fMRI66 and lesion67 studies has shown that the MTL is needed 

specifically when feedback is delayed and must be bound across time. While these studies all 

reflect the sorts of relational computations thought to be performed by the MTL68,69 and underlying 

episodic memory70,71, recruiting episodic memory is not explicitly necessary in any of this work. 

In fact, to the best of our knowledge, little work has been done to test whether the MTL is required 

for decisions in which intact episodic memory is unambiguously required for adequate 

performance. This is, in part, due a lack of tasks which can cleanly separate the contributions of 

episodic memory from other memory systems. One avenue for future work would be to test for a 

causal role of the MTL in value-based decisions that are clearly based on episodic memory using 

the present task in patients with MTL damage. 
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It has been suggested that episodic memory may in some cases be recruited more in order to 

compensate for deficits in incremental learning. We did not find support for this in the present 

work. This hypothesis relates to a more general idea in the field of cognitive control: that the brain 

may judiciously adopt different decision strategies under the circumstances for which each is likely 

to produce the most rewarding choices. Most notably, this logic has been used to explain how the 

brain arbitrates between deliberative and habitual decisions,72,73 and was recently extended to 

investigate competition between incremental learning and episodic memory using a variation of 

the task presented here.24 In that study, it was found that decisions were indeed guided by episodic 

memory more often when incremental learning yielded unreliable estimates of value. In the present 

work, we found that PD patients off-dopamine replacement medication were selectively impaired 

at incremental learning, and that they recruited episodic memory for decisions to the same extent 

as healthy controls.  

Given that impaired incremental learning should yield particularly unreliable estimates, this 

finding is somewhat surprising. There are at least two possible explanations. First, Nicholas et al., 

(2022) found that tracking uncertainty around incrementally constructed estimates was important 

for successful arbitration with episodic memory. Because this type of summary statistic is 

fundamentally built upon reward prediction error signaling, it is reasonable to assume that patients 

off-medication were not able to compute it. Second, in our task, an ideal observer with perfect 

episodic memory would always benefit from using it to make decisions. Yet we find that 

participants are far from this ideal: they are biased by recognition and limited in their ability to 

remember object identity and value. The fact that all groups had a similar capacity for remembering 

individual objects in our subsequent memory test suggests that they may be performing at, or near, 

the limits of episodic memory. The presence of such a ceiling effect may therefore make it difficult 

to adequately measure any compensatory usage of episodic memory in the present task. 

Relatedly, while initially it was thought that PD patients demonstrate few issues with episodic 

memory,4 it has since emerged that PD patients, even in early stages, are often impaired in this 

domain.74 Specifically, PD patients have been reported to show large deficits on tests on both 

immediate and delayed measures of free recall,75 and a number of studies have found that 

recognition memory is similarly affected,12–16 although evidence is mixed on this point.33–36 While 

the exact reasons for these differences are not currently known, recent evidence suggests that 
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atrophy in the MTL is more common with PD than previously thought,74,76 and that MTL atrophy 

is related to memory impairments in PD.76,77 Although episodic memory deficits and MTL atrophy 

are more common with later disease progression, both have been reported during earlier stages of 

PD.74 Here we find no evidence for episodic memory impairment in PD patients, both on and off 

their dopamine replacement medication, relative to healthy controls. Not only were patients able 

to base choices on their memory for single experiences, but they were also able to both recognize 

and remember the value of these individual cues when tested following a short delay. These 

findings therefore provide further support for intact episodic memory during the mild-to-moderate 

stages of PD. 

Furthermore, we found that administering dopamine replacement medication to PD patients 

improved their memory for the value of individual objects when it was most relevant for choice. 

This result joins recent work in PD patients36 to suggest that dopamine aids in prioritizing the 

formation of long-term memories that are associated with motivationally significant.53–55 While 

one past study investigated the effects of dopamine on incidental information presented alongside 

reward,36 here we extend these findings by demonstrating that dopamine strengthens subsequent 

memory for the motivational information associated with single events regardless of its valence. 

Critically, in the present experiment, all individual cues and their value were relevant for guiding 

choice, which allowed us to examine dopamine’s effects on memory for information that was not 

merely incidental. Further, as in Sharpe et al. (2020), we also found relatively no effect on the 

overall capacity of both recognition and value memory, regardless of patients’ medication status. 

These findings therefore lend additional support to the idea that dopamine effects what, as opposed 

to how much, is stored in memory. 

Another consideration related to the effect of PD on incremental learning that we found here is 

that the exact nature of this impairment is currently not well understood. While studies have 

typically assumed that the absence of striatal dopamine in PD patients leads to deficiencies in 

incremental learning, recent findings32 have suggested that it may instead impair learning that is 

more goal-directed and reliant on building models of task structure. Work in rodents has similarly 

demonstrated that phasic dopamine signals are important for learning associations between stimuli 

to support model-based inference.78,79 In light of these findings, one possibility is that the types of 

paradigms typically used to measure incremental learning may instead measure model-based 
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learning, thereby masking the true source of PD patients’ impairment. Two potential avenues for 

this misattribution may be that participants could develop rules and/or use working memory to 

guide their choices.32,80–82 Although the way that incremental learning was operationalized in our 

experiment was, by itself, no different from a typical two-armed bandit task often seen in the 

literature, there is evidence that neither of these potentially model-based approaches were used. 

First, we found no relationship between patients’ sensitivity to learned deck value and our 

measures of working memory. Second, past work24 deploying a variant of the same task in healthy 

adults found that participants were more likely to engage in incremental learning than rule-based 

inference. Regardless, while here we have shown that PD patients are capable of using individual 

trials to guide their choices, suggesting that this strategy does not contribute to their inability to 

learn from trial-and-error, future work will be required to similarly disentangle contributions of 

model-based learning as well. 

We found that PD patients’ incremental learning impairment manifested as both decreased 

sensitivity to learned deck value and also a suboptimal rate of learning. Importantly, an altered 

learning rate in the absence of phasic dopamine is expected if this signal is responsible for encoding 

reward prediction error. This is because, in standard models of incremental learning like the type 

we employed here, cue values are updated by the product of the learning rate and the reward 

prediction error.20 While past work has found that PD patients off-medication may update value 

either more83 or less84 quickly than when on-medication, we note here that the optimal learning 

rate differs from task-to-task. In particular, what learning rate will be best is modulated by a task’s 

baseline level of volatility, or how frequently changes in the mapping between actions and 

outcomes occur.50–52 While we found that PD patients off-medication updated more rapidly than 

when on-medication, critically, when patients were administered their dopamine replacement 

medication they learned more optimally in response to the statistics of our particular task 

environment. This result provides evidence that optimal learning is more likely in the presence of 

intact reward prediction error signaling. 

In conclusion, these results demonstrate that striatal dopamine depletion in PD impairs incremental 

learning from trial-and-error with no effect on the recruitment of episodic memory for choice. 

Dopamine replacement remediated this deficit while enhancing subsequent memory for the value 

of motivationally relevant stimuli. These effects suggest both that decisions based on the value of 
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single experiences can be made in the absence of striatal dopamine, and that PD patients remain 

impaired at learning about reward from trial-and-error when episodic memory is properly 

controlled for. By probing the role of these separate memory systems in a single decision-making 

task, these findings shed light on the extent to which either are modulated by the presence or 

absence of dopamine in Parkinson’s disease. 
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Supplemental Material 
 

 
Supplemental Figure 1. Full model comparison. The combined reinforcement learning model performed 
best for all groups, as measured by having the highest expected log pointwise predictive density (ELPD) 
compared to models that included only incremental (shown in A) or episodic (shown in B) influences on 
choice. ELPD is a measure of estimated out-of-sample fit, and more negative numbers in the difference 
between two models indicate a better fit for the first model. C) While the combined reinforcement learning 
model best explained choices in all groups, we also compared the performance of models that incorporated 
either only sensitivity to incremental value or sensitivity to episodic value to capture the extent to which 
choices could be explained by either. Choices made by healthy controls and PD patients on medication 
were, in general, better explained by incremental learning than by episodic memory, but this was not the 
case for PD patients off medication.  
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Supplemental Figure 2. Deck learning behavior as a function of the number of trials since a reversal 
in deck value. Top: Participants tended to choose the currently lucky deck more often with more experience 
following a reversal. Group-level estimates of a linear regression model are shown in bold (Healthy 
controls: purple, PD patients on medication: dark blue, PD patients off medication: light blue) and 
individual subject estimates are shown as thin lines. Bottom: Estimated deck value from the combined 
reinforcement learning model tends to track with trials since reversal in all groups both when the red deck 
is lucky (shown in red) and when the blue deck is lucky (shown in blue). Linear regression fits are shown 
as lines, binned data with group averages shown as points, and error bars and bands (where shown) represent 
95% confidence intervals. 
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Supplemental Table 1. Correlations between PD participant-level measures and incremental value sensitivity (as estimated by 
the combined choice reinforcement learning model) 

  
PD on-medication 

 
PD off-medication 

  
Correlation (r) 

 
P-Value 

 
Correlation (r) 

 
P-Value 

Age 0.048 0.875 -0.161 0.772 

Sex -0.472 0.089 -0.383 0.535 

Education -0.223 0.589 -0.158 0.772 

MoCA 0.043 0.875 0.145 0.772 

Geriatric Depression 
Scale 
 

0.229 0.589 0.104 0.778 

Starkstein Apathy 
Scale 
 

0.434 0.089 0.126 0.772 

Digit Span forward -0.032 0.875 0.02 0.913 

Digit Span backward 0.081 0.87 -0.167 0.772 

UPDRS 0.439 0.089 -0.071 0.810 

Disease duration -0.109 0.875 -0.158 0.772 

All p-values FDR-corrected for multiple comparisons. 
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Supplemental Table 2. Group-level parameter fits from the combined reinforcement learning model. Parameters are reported 
as the mean of the posterior distribution alongside 95% and 80% credible intervals. 

 
Group 

 
Parameter 

 
Estimate  

 
2.5% CI 

 
97.5% CI 

 
10% CI 

 
90% CI 

Healthy controls Deck Bias -0.010 -0.103 0.092 -0.071 0.055 

 Deck Value 3.590 2.258 4.993 2.663 4.443 

 Old Value 0.559 0.139 1.027 0.259 0.819 

 Old Bias 0.773 0.348 1.214 0.497 1.043 

 Perseveration 0.074 -0.222 0.387 -0.109 0.265 

 Learning Rate 0.482 0.298 0.677 0.367 0.617 

PD on-medication Deck Bias -0.059 -0.148 0.023 -0.113 -0.001 

 Deck Value 2.765 1.318 4.163 1.766 3.719 

 Old Value 0.516 -0.017 1.043 0.186 0.874 

 Old Bias 1.133 0.870 1.396 0.968 1.308 

 Perseveration 0.424 0.065 0.784 0.200 0.647 

 Learning Rate 0.418 0.190 0.663 0.238 0.562 

PD off-medication Deck Bias -0.074 -0.210 0.059 -0.161 0.009 

 Deck Value 1.248 0.559 2.099 0.691 1.699 

 Old Value 0.657 0.149 1.191 0.290 0.961 

 Old Bias 1.121 0.622 1.646 0.792 1.423 

 Perseveration 0.423 0.106 0.751 0.212 0.631 

 Learning Rate 0.637 0.343 0.950 0.442 0.901 
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