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Abstract
Recent findings in animals have challenged the traditional view of the cerebellum solely as the site of motor control, suggest-
ing that the cerebellum may also be important for learning to predict reward from trial-and-error feedback. Yet, evidence for 
the role of the cerebellum in reward learning in humans is lacking. Moreover, open questions remain about which specific 
aspects of reward learning the cerebellum may contribute to. Here we address this gap through an investigation of multiple 
forms of reward learning in individuals with cerebellum dysfunction, represented by cerebellar ataxia cases. Nineteen par-
ticipants with cerebellar ataxia and 57 age- and sex-matched healthy controls completed two separate tasks that required 
learning about reward contingencies from trial-and-error. To probe the selectivity of reward learning processes, the tasks 
differed in their underlying structure: while one task measured incremental reward learning ability alone, the other allowed 
participants to use an alternative learning strategy based on episodic memory alongside incremental reward learning. We 
found that individuals with cerebellar ataxia were profoundly impaired at reward learning from trial-and-error feedback on 
both tasks, but retained the ability to learn to predict reward based on episodic memory. These findings provide evidence 
from humans for a specific and necessary role for the cerebellum in incremental learning of reward associations based on 
reinforcement. More broadly, the findings suggest that alongside its role in motor learning, the cerebellum likely operates 
in concert with the basal ganglia to support reinforcement learning from reward.
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Introduction

It is well established that the cerebellum is required for 
refining movement through supervised motor learn-
ing [1–4]. The cerebellum receives error signals from 

climbing fiber input which then alters Purkinje cell plastic-
ity to adapt motor behavior in service of minimizing future 
error [5–7]. However, recent findings have challenged the 
notion that the cerebellum is solely responsible for super-
vised learning of motor behavior and instead suggest that 
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the cerebellum may also be involved in the processing of 
reward more generally [8–19]. In particular, climbing fiber 
inputs to the cerebellum encode expected reward [13, 15, 
17, 19], and cerebellar Purkinje cells have been found to 
report reward-based prediction errors [11, 12, 18]. These 
signals are essential ingredients for reinforcement learn-
ing, or learning that allows an organism to determine from 
trial-and-error feedback which actions should be taken in 
order to maximize future expected reward. The presence of 
reward-related processing in the cerebellum suggests that 
it may play a role in reinforcement learning alongside its 
capacity for supervised motor learning [20]. This proposal 
challenges not only our current understanding of cerebel-
lar function, but also our understanding of how the brain 
learns from reward more broadly [5, 21].

Although research on the cerebellum’s function in 
reward learning is growing, the vast majority of work 
has been done in animal models [10–19], and evidence 
in humans remains limited. Human neuroimaging studies 
have revealed correlational evidence that the cerebellum 
is involved in tasks unrelated to movement [22]; however, 
despite some reports of BOLD activity in the cerebellum 
in response to reward across several early imaging studies 
[23–25], more direct investigations of the role of cerebel-
lum in reward-related behaviors in humans are lacking. 
The aim of the present study was to fill this gap by test-
ing whether individuals with damage to the cerebellum, 
as occurs in cerebellar ataxia (CA), are impaired in their 
ability to acquire stimulus-reward associations.

Our study builds upon a rich literature focused on learn-
ing about reward from trial-and-error feedback. This pro-
cess has been studied extensively using models of incre-
mental learning, which rely on error-driven rules that 
summarize experiences with a running average [26–28]. 
During reward learning of this type, an agent uses the out-
come of a recent decision to associate some stimulus with 
an action. Following successful learning, actions that are 
more likely to be rewarded are more likely to be repeated. 
This simple mechanism has been evoked to explain 
instrumental conditioning behavior and is well-captured 
by reward prediction error signals in midbrain dopamine 
neurons that project to the striatum [27, 29]. This error 
signal is also precisely what has been implicated in recent 
animal models of cerebellar contributions to reward learn-
ing [9], suggesting an additional, albeit unclear, role for 
the cerebellum in this process. Whether these cerebellar 
contributions are actually needed for successful incremen-
tal reward learning in humans is at present unknown.

To answer this question, we asked individuals with CA 
to complete a series of tasks that required them to learn 
associations between stimuli from trial-and-error feedback in 
order to maximize expected reward. CA is defined as a lack 
of coordination caused by disorders that affect cerebellar 

function [30]. A large variety of conditions can cause CA, 
ranging from immune-mediated disease to genetic and neu-
rodegenerative disorders. Given the presence of cerebellar 
dysfunction in CA cases, studying individuals with CA is a 
common method used to investigate the necessary physi-
ological functions of the cerebellum in humans.

Nineteen individuals with CA and 57 age- and sex-
matched healthy controls (HC) completed two tasks (Fig. 1). 
The first, referred to throughout as the incremental learn-
ing task, allowed us to measure each participants’ ability to 
learn about reward incrementally. This task was motivated 
by recent work using a similar simplified paradigm to inves-
tigate cerebellar-based incremental learning in non-human 
primates [10, 11]. The second task, referred to throughout as 
the multiple learning strategies task, allowed us to measure 
whether any impairments were specific to incremental learn-
ing alone. In the multiple learning strategies task, learning 
about reward can be supported by an alternative strategy 
based on episodic memory for trial-unique past outcomes. 
Healthy adults readily use of both of these strategies in this 
task [31, 32]. We hypothesized that cerebellar dysfunction 
would lead specifically to impaired incremental reward 
learning relative to healthy controls.

Materials and Methods

Cerebellar Ataxia Participants

Nineteen individuals with cerebellar ataxia were recruited 
from the Ataxia Clinic, Columbia University Medical 
Center and completed both tasks (see Table 1 for informa-
tion about basic CA participant demographics and diagno-
ses). Due to hardware issues, data from one participant on 
each task was not saved. The first CA participant also com-
pleted a shorter pilot version of the incremental learning 
task, and several changes were made before running this 
task on the other 18 CA participants. Thus, the final sample 
for the incremental learning task was 17 CA participants, 
and the final sample for the multiple learning strategies 
task was 18 CA participants. Task order was counterbal-
anced. A neuropsychological battery comprising the Mon-
treal Cognitive Assessment (MOCA), Beck’s Depression 
Inventory (BDI), MESA digit forward and backward span, 
trail making test A and B, and the cerebellar cognitive 
affective syndrome scale (CCAS) was conducted between 
tasks for each participant. This battery was specifically 
selected based on the current understanding of the cer-
ebellum’s role and association with non-motor symptoms, 
such as depression [33], executive function [34, 35], and 
attention [36]. Patients were compensated at a rate of $15/
hour for their time, and the in-person session took an aver-
age of 2.5 h, including breaks.
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Healthy Controls

Age- and sex-matched participants were recruited through 
Amazon Mechanical Turk using the Cloud Research 
Approved Participants feature [37]. To account for poten-
tial variability due to online data collection, three matched 
controls were collected for each CA participant, bringing 
the total number of controls to 57 (3:1 match). Data from 
one control was excluded for the multiple learning strategies 
task due to random responding. Task order was counterbal-
anced such that the tasks were completed in the identical 
order to each control’s matched CA participant. A modified 
online neuropsychological battery consisting of 7 meas-
ures was completed in between each task for comparison 
to individuals with CA. Five of these measures (Semantic 
Fluency, Phonemic Fluency, Category Switching, Similari-
ties, and Go No Go) were directly taken from the CCAS, 
and two others were composed of the MESA digit forward 
back backward span. Participant recruitment was restricted 
to the USA. Before starting each task, all participants were 
required to score 100% on a quiz that tested their compre-
hension of the instructions. Controls were compensated at a 
rate of $15/hour for their time.

Experimental Design

Incremental Learning Task

In the incremental learning task (Fig. 1A), participants 
were told that they would be playing a game where they 
were required to press a key, either F or J, whenever one of 
two symbols was seen, and that they would receive feed-
back about whether they had pressed correctly following 
each trial. They were then informed that it was their job to 
determine which key they should press for each symbol, and 
that what key is best will change throughout the experiment. 
Outcomes were determined by a drifting probability such 
that each button was correct for each image 50% of the time. 
Critically, these probabilities differed over time, thus encour-
aging constant learning throughout the task. Participants 
were told to press the F key with their left index finger and 
the J key with their right index finger. The response period 
during which the symbol remained on the screen lasted 1.5 s, 
with feedback displayed for 1 s immediately following the 
response period. An intertrial interval featuring a fixation 
cross was shown for an average of 1 s, but varied between 
0.5 and 1.5 s. Lastly, to provide a rewarding outcome for 

Fig. 1   Design of the incremental learning and multiple learning 
strategies tasks. A Left: Trial design for the incremental learning 
task. Participants saw one of two fractal cues on the screen and were 
required to press either the F key with their left hand or the J key with 
their right hand. Following their choice, they received binary proba-
bilistic feedback about whether they were correct or not. Right: Drift-
ing cue-response-reward contingencies over the course of the incre-
mental learning task. The probability that the F key is rewarded is 
shown for each cue in blue and orange. B Left: Trial design or the 

multiple learning strategies task. Participants chose between two 
decks of cards (one blue and one orange) and received an outcome 
between $0 and $1 in intervals of 20 cents. Each card featured a trial-
unique object that could repeat once every 9–30 trials. Participants 
were told that if they saw the same card again, it would be worth the 
same amount as the first time that it appeared. Right: An example of 
how average deck value reversed throughout the course of the multi-
ple learning strategies task
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correct responses, participants were informed that they 
could earn bonus money based on their performance. Cor-
rect responses were worth an additional cent each, and, on 
average, healthy control participants earned $1.24, and CA 
participants earned $0.92 in bonus compensation.

Multiple Learning Strategies Task

The other task completed by participants was previously 
developed by our lab [31, 32] to measure the relative contribu-
tion of incremental learning and episodic memory to decisions 
(Fig. 1B). Participants were told that they would be playing 
a card game where their goal was to win as much money as 
possible. Each trial consisted of a choice between two decks 
of cards that differed based on their color (red or blue). Par-
ticipants had two seconds to decide between the decks. The 
outcome of each decision was then immediately displayed 
for 1.5 s. Following each decision, participants were shown a 
fixation cross during the intertrial interval period which varied 
in length (mean = 1.5 s, min = 1 s, max = 2 s). Decks were 
equally likely to appear on either side of the screen on each 
trial. Participants completed a total of 150 trials.

Participants were made aware that there were two 
ways they could earn bonus money throughout the task, 
which allowed for the use of incremental learning and 
episodic memory respectively. First, at any point in the 

experiment one of the two decks was “lucky,” meaning 
that the expected value ( V  ) of one deck color was higher 
than the other ( Vlucky=63¢, Vunlucky=37¢). Outcomes ranged 
from $0 to $1 in increments of 20¢. Critically, the map-
ping from V  to deck color reversed periodically throughout 
the experiment, which incentivized participants to utilize 
each deck’s recent reward history to determine the identity 
of the currently lucky deck. Second, to assess the use of 
episodic memory throughout the task, each card within a 
deck featured an image of a trial-unique object that could 
re-appear once throughout the experiment after initially 
being chosen. Participants were told that if they encoun-
tered a card a second time it would be worth the same 
amount as when it was first chosen, regardless of whether 
its deck color was currently lucky or not. On a given trial 
t  , cards chosen once from trials t − 9 through t − 30 had a 
60% chance of reappearing following a sampling proce-
dure designed to prevent each deck’s expected value from 
becoming skewed by choice, minimize the correlation 
between the expected value of previously seen cards and 
deck expected value, and ensure that choosing a previously 
selected card remained close to 50¢. Participants were 
paid a bonus in proportion to their final combined earn-
ings in this task (total earnings/100). On average, healthy 
control participants earned $0.76, and CA participants 
earned $0.70 in bonus compensation on this task.

Table 1   Basic CA participant demographics and neuropsychiatric measures

SCA spinocerebellar ataxias, MSA-C multiple system atrophy, cerebellar type, ILOCA idiopathic late onset cerebellar ataxia, IMCA immune-
mediated cerebellar ataxia, FA Friedreich’s ataxia, CCAS cerebellar cognitive affective/Schmahmann syndrome scale, MoCA Montreal cognitive 
assessment, BDI Beck’s depression inventory, QUIP questionnaire for impulsive-compulsive disorders in Parkinson’s disease, FDS forward digit 
span, BDS backward digit span, TMTA trail making test part A, TMTB trail making test part B

Participant Age (years) Sex Diagnosis CCAS MoCA BDI QUIP FDS BDS TMTA (sec) TMTB (sec)

Participant 1 40 M SCA3 59 21 15 40 8 5 50 150
Participant 2 33 M SCA3 77 21 9 12 11 5 21 261
Participant 3 20 F SCA2 92 27 23 10 13 4 41 71
Participant 4 52 F MSA-C 85 27 4 0 8 3 23 158
Participant 5 61 F SCA2 92 23 15 38 8 4 49 169
Participant 6 56 M MSA-C 100 26 7 8 13 4 66 127
Participant 7 52 M SCA2 62 26 13 55 11 4 105 287
Participant 8 41 F SCA2 95 29 18 2 10 8 45 97
Participant 9 43 M SCA1 87 27 0 6 10 6 52 104
Participant 10 62 F MSA-C 70 21 4 25 6 6 45 121
Participant 11 54 M SCA2 72 21 0 5 11 5 32 100
Participant 12 67 F ILOCA 101 29 12 16 12 5 51 88
Participant 13 60 F SCA3 104 28 1 0 14 9 42 113
Participant 14 51 F SCA10 74 25 13 8 8 2 35 83
Participant 15 66 M SCA1 60 23 4 20 7 3 66 127
Participant 16 49 M IMCA 86 28 17 6 13 7 81 225
Participant 17 54 M FA 98 26 24 8 10 8 50 80
Participant 18 33 F FA 84 27 3 26 9 4 38 84
Participant 19 54 F IMCA 113 28 18 4 11 8 33 62
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Following completion of the multiple learning strategies 
task, we tested participants’ memory for the trial-unique 
objects. Participants completed up to 54 three-part memory 
trials. An object was first displayed on the screen, and par-
ticipants were asked whether or not they had previously seen 
the object and were given five response options: Definitely 
New, Probably New, Don’t Know, Probably Old, Definitely 
Old. If the participant indicated that they had not seen the 
object before or did not know, they moved on to the next 
trial. If, however, they indicated that they had seen the object 
before they were then asked if they had chosen the object or 
not. Lastly, if they responded that they had chosen the object, 
they were asked what the value of that object was.

Computational Models

In order to capture subjective estimates of incrementally 
constructed value on each task, we fit computational mod-
els to participants’ choices. Below we describe each of these 
models in detail.

Q Learning Models

We modeled incremental reward learning using a Q Learn-
ing model, which is a standard model-free reinforcement 
learner that assumes a stored value ( Q ) for each deck is 
updated over time [26, 28]. Q is then referenced on each 
decision in order to guide choices. After each outcome, rt , 
the value for an option Q1 is updated according to the fol-
lowing rule if that option is chosen:

And is not updated if a different option is chosen:

Likewise, if a different option is chosen, its value is 
updated equivalently. Large differences between estimated 
value and outcomes therefore have a larger impact on 
updates, but the overall degree of updating is controlled by 
the learning rate, � , which is a free parameter constrained 
to lie between 0 and 1.

For the incremental learning task, the model learned sep-
arate Q values for each cue and button combination, such 
that four Q values were estimated in total. Decisions were 
then modeled using the following rule:

Q1,t+1 = Q1,t + �(rt − Q1,t)

Q1,t+1 = Q1,t

P(ChooseF) = �(�0,1 + �0,2 + �1,1(QF,1 − QJ,1) + �1,2(QF,2 − QJ,2))

�(x) =
1

1 + e−x

such that four inverse temperatures � were estimated 
to capture a bias toward choosing a key for each cue ( �0,1 
and �0,2 ) and sensitivity to incrementally learned value for 
each cue ( �1,1 and �1,2 ). This model is referred to as the “Q 
Learner” model throughout the text.

For the multiple learning strategies task, the model 
learned separate Q values for each deck color, such that two 
Q values were estimated in total. Decisions were then mod-
eled using the following rule:

such that three inverse temperatures � were estimated to 
capture sensitivity to incrementally learned value ( �1 ), sensi-
tivity to the value of previously seen objects ( �2 ), and a bias 
toward choosing the deck featuring a previously seen object 
regardless of its value ( �3 ). The predictor OldValue was the 
coded true value of a previously seen object (ranging from 
0.5 if the value was $1 on the red deck or $0 on the blue deck 
to − 0.5 if the value was $0 on the red deck and $1 on the blue 
deck), and the predictor Old was coded as 0.5 if the red deck 
featured a previously seen object and − 0.5 if the blue deck did 
instead. For both of these predictors, trials that did not feature a 
previously seen object were coded as 0. This model is referred 
to as the “Hybrid” model throughout the text.

Biased Responder Model

For both tasks, we compared the performance of the Q 
Learning models to a model which made choices that were 
completely independent of reward information. For the 
incremental learning task, this model was simply:

such that choices depended only on choosing a button to 
press for each cue throughout the experiment. For the mul-
tiple learning strategies task, this model was

such that choices depended only on preferring one deck 
over the other throughout the experiment. Our logic in 
using this model as a baseline was that responses captured 
by the Q learning models should, at a minimum, outper-
form a biased responder that did not consider reward in 
order for it to make meaningful predictions about partici-
pants’ behavior.

Posterior Inference and Model Comparison

Model parameters for each participant were estimated 
using Bayesian inference. The joint posterior was 

P(ChooseRed) = �(�1(QR − QB) + �2(OldValue) + �3(Old))

P(ChooseF) = �(�0,1 + �0,2)

P(ChooseRed) = �(�0)
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approximated using No-U-Turn Sampling [38] as imple-
mented in stan [39]. Four chains with 2000 samples (1000 
discarded as burn-in) were run for a total of 4000 posterior 
samples per model per subject. Chain convergence was 
determined by ensuring that the Gelman-Rubin statistic 
R̂ was close to 1 for all parameters. For the incremental 
learning task, the Q learner did not converge for one CA 
participant, and so that individual and their matched con-
trols were removed from further model-based analyses. 
For the multiple learning strategies task, all models for all 
participants converged.

Under this approach, the likelihood function for all mod-
els can be written as

where ct is 1 if the subject chose F (in the resonse mapping 
task) or red (in the multiple learning strategies task). Here, 
�t is the linear combination of inverse temperature param-
eters and predictors explained above for each model. For the 
Q learning models, the learning rate,� , had the following 
weakly informative prior:

For all models, every inverse temperature parameter had 
the following weakly informative prior:

Model fit was assessed using approximate leave-one-
out cross validation estimated using Pareto-smoothed 
importance sampling [40]. The expected log pointwise 
predictive density (ELPD) was computed and used as a 
measure of out-of-sample predictive fit for each model.

ct ∼ Bernoulli(�t)

� ∼ �(0, 1)

� ∼ N(0, 5)

Bayesian Observers

In order to provide a normative performance benchmark, we 
simulated beliefs about incremental value as estimated by 
Bayesian observers for each task. For the incremental learning 
task, this learner was a Kalman Filter [41], and for the multiple 
learning strategies task this learner was a reduced Bayesian 
change-point detection model [42]. Choices in the incremen-
tal learning task were made according to which button the 
observer believed was the most likely to be rewarded for each 
cue at each time point. Choices in the multiple learning strate-
gies task were made differently depending on whether a previ-
ously seen object was present. For trials in which no previously 
seen object was shown, the observer responded according to 
its beliefs about deck value. For trials in which a previously 
seen object was present, however, the observer compared the 
value of that object to its belief about deck value for the oppos-
ing deck and chose accordingly. In this way, the observer was 
augmented with “perfect” episodic memory.

Regression Models

Mixed effects Bayesian regressions were used to test effects 
of group (CA participant or control). Group membership was 
allowed to vary randomly by CA participant identifier, pid , 
such that CA participants and matched controls were assigned 
the same ID. In these models, GroupID was coded as − 0.5 for 
CA participants and 0.5 for controls. We additionally controlled 
for working memory ability by including backwards digit span 
scores, dsBwd , as a standardized covariate in these analyses.

For the incremental learning task, we assessed behavioral 
performance using the following logistic regression:

p(Correct) = �(�0 + b0,pid[t] + GroupIDt(�1 + b1,pid[t])

+ pFReward1t
(

�2 + b2,pid[t]
)

+ GroupIDt × pFReward1t
(

�3 + b3,pid[t]
)

+ pFReward12
t
(�4 + b4,pid[t]) + GroupIDt × pFReward12

t
(�5 + b5,pid[t])

+ dsBwd�6 + RT�7)

Here, and in all regressions described in this section, � 
stands for fixed effects, and b stands for random effects of 
CA participant ID. The predictor pFReward1 indicates the 
true underlying difficulty of the task and is the probability 
that the F key was rewarding for cue one. A second-order 
polynomial was included for this predictor as extreme val-
ues indicate portions of the task that are easier and mid-
dling values indicate portions of the task that were more 
difficult. Interaction effects of this predictor and group 
were included to capture differences in sensitivity to the 
underlying task difficulty between the groups. Lastly, the 

reaction time, RT  , on each decision was included as a 
standardized covariate in this analysis to account for any 
differences that may be due to slowed responding by indi-
viduals with CA on this task.

For both the incremental learning and multiple learning 
strategies tasks, we assessed whether there were differences 
between the groups on Q learning model performance com-
pared to the baseline biased responder model with the fol-
lowing linear regression:

ELPDDifference = �0 + b0,pid[t] + GroupIDt(�1 + b1,pid[t]) + dsBwd�2
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where ELPDDifference was the difference in model per-
formance (Q Learning model ELPD − Biased Responder 
ELPD; see above) for each subject.

For the multiple learning strategies task, we assessed 
behavioral incremental learning performance using the fol-
lowing logistic regression:

p(ChooseLucky) = �(�0 + b0,pid[t] + T−3∶3 × GroupIDt(�1∶7 + b1∶7,pid[t]) + dsBwd�8)

In this regression, we grouped trials according to 
their distance from a reversal, up to three trials prior 
to ( t = −3 ∶ −1 ), during ( t = 0 ), and after ( t = 1 ∶ 3 ) a 
reversal occurred. We then dummy coded them to meas-
ure their effects on the degree to which the lucky deck 

was chosen and interacted each dummy coded regressor 
with group to measure how this was affected by group 
membership.

We also assessed behavioral sensitivity to low- and high-
value objects using a similar logistic regression:

p(ChooseOld) = �(�0 + b0,pid[t] + LowValuet × GroupIDt(�1 + b1,pid[t])

+ HighValuet × GroupIDt

(

�2 + b2,pid[t]
)

+ dsBwd�3)

In this regression, in order to assess sensitivity to low- and 
high-value objects separately, we grouped trials on which a 
previously seen object was shown according to whether the 
value of the object was less than 0.5 ( LowValue ) or greater 
than 0.5 ( HighValue ). We then estimated the effect of the 
interaction of each of these variables with group member-
ship to measure differences between groups.

We then assessed the degree to which each group used 
either incrementally learned deck value, the value of previ-
ously seen objects, or a bias toward previously seen objects 
regardless of their value as estimated by the Hybrid Q learning 
model using a simple linear regression of the following form 
for each of these inverse temperature parameters and groups:

Here we interested primarily in the intercept, �0 , as this 
determined the degree to which each group’s inverse temper-
atures were above zero. We additionally assessed differences 
between groups on each of these measures by including fixed 
and random effects for group that varied by matched par-
ticipant ID, as in previously described regression analyses.

We also assessed the impact of group on subsequent 
memory performance following the multiple learning strat-
egies task using the following linear regression:

where Dprime is the signal detection measure d′ , which is 
the difference in z scored hit rate and false alarm rate for each 
participant. The hit rate was calculated as the proportion of 
trials on which a participant answered “Old” when the pre-
sented object was previously seen (including both “Definitely 
Old” and “Probably Old” responses). The false alarm rate was 
calculated as the proportion of trials on which a participant 

InvTemps = �0 + dsBwd�1

Dprime = �0 + b0,pid[t] + GroupIDt(�1 + b1,pid[t]) + dsBwd�2

answered “New” when the presented object was not previ-
ously seen (including both “Definitely New” and “Probably 
New” responses). Trials on which a participant responded 
“Don’t Know” were dropped from further analysis.

We were also interested in determining whether there 
were any differences in reaction times between individuals 
with CA and matched controls due to motor impairment. For 
both tasks, we did this by assessing whether there were any 
differences in reaction time between groups:

where RT was the median reaction time across trials in either 
task. A separate regression of this form was used for each of 
the two tasks. We also assessed whether there were differences 
on each neuropsychological measure using a similar regression.

For all regression analyses, fixed effects are reported in 
the text as the mean of each parameter’s marginal posterior 
distribution alongside 95% credible intervals, which indicate 
where 95% of the posterior density falls. Parameter values 
outside of this range are unlikely given the model, data, and 
priors. Thus, if the range of likely values does not include 
zero, we conclude that a meaningful effect was observed.

Results

Impaired Reward Learning in the Incremental 
Learning Task

Our first goal was to assess CA participants’ baseline abil-
ity to learn incrementally from reward using the incre-
mental learning task. On this task, CA participants made 
overall fewer correct choices compared to healthy controls 

RT = �0 + b0,pid[t] + GroupIDt(�1 + b1,pid[t])
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( �Group = −0.88, 95% CI = [−1.55, −0.144] ; Fig. 2A). CA 
participants’ choices were less correct throughout the entirety 
of the task, even during periods of learning where action-
outcome contingencies were more deterministic (e.g., close 
to 100%) compared to more difficult periods of learn-
ing ( �Group×pFReward12 = −5.49, 95% CI = [−7.57,−3.52] ; 
Fig.  2B–C. Overall, this difference in performance 
indicates that CA participants did not learn from 
reward feedback. Although CA participants responded 

slightly more slowly than healthy controls on this task 
(  �Group = −115.81, 95% CI = [−201.26,−33.55] ) ,  w e 
included reaction times as a covariate in the above regres-
sion analysis to ensure that differences in choice accuracy 
were not attributed to motor slowing in CA participants.

Next, to more formally assess participants’ performance 
on this task, we fit a standard Q learning model to partici-
pants’ responses. This model captures the extent to which 
each participant incorporated trial-by-trial outcomes into 

Fig. 2   Performance on the incremental learning task. A Perfor-
mance on the incremental learning task averaged across all tri-
als for healthy controls (HC) and CA participants compared to a 
Bayesian observer in gray, which represents normative perfor-
mance on the task. Individual points are averages for each subject 
and filled in points represent group-level averages. Error bars are 
95% confidence intervals. B Performance on the incremental learn-
ing task over time. Each timepoint represents ten trials. Lines are 
group averages, and bands are 95% confidence intervals. For nor-
mative comparison, the performance of the Bayesian observer 
is shown as a dotted gray line. C Performance on the incremen-
tal learning task as a function of task difficulty, which is indexed 
by the true underlying probability that pressing the F key was the 
correct response (> 50%) on each trial. Points represent group 

level averages from 13 bins with an equal number of trials, lines 
represent the fit of a second-order linear model, and error bars and 
bands represent 95% confidence intervals. D Model performance of 
the Q Learner and baseline Biased Responder models. Left: Pos-
terior predictive performance. Individual lines represent Q learner 
fits for each individual, whereas thick lines represent the group-
level average fit (with the Q Learner in color and Biased Responder 
in gray). Bands represent 95% confidence intervals. Right: The 
difference in estimated out-of-sample predictive performance (as 
measured by expected log pointwise predictive density; ELPD) 
between the Q Learner and the Biased Responder model for each 
group. Individual points are the ELPD difference for each subject 
and filled in points represent group-level averages. Error bars are 
95% confidence intervals
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running estimates of the value of pressing each button in 
response to each cue, as well as whether choices are based 
on these estimates. As a baseline, we compared the per-
formance of this model to a biased responder that merely 
estimated the extent to which each participant pressed one 
button over the other, regardless of outcome, in response 
to each cue. While healthy controls’ responses were well 
described by the Q learning model, this model did no bet-
ter than the biased responder at predicting CA partici-
pants’ decisions, thus demonstrating that CA participants 
engaged in little-to-no incremental learning (Fig.  2D). 
On a measure of estimated out-of-sample predictive per-
formance, controls were substantially better fit by the 
Q learner compared to the biased responder, while this 
improvement in fit was largely absent for CA participants 
( �Group = 30.94, 95% CI = [16.465, 46.0] ). Thus, while 
healthy controls incorporated feedback into their estimates 
about the relationship between cue and action at each time-
point, CA participants generally did not.

Together, these results indicate that individuals with CA 
are impaired at reward learning from trial-and-error.

Impaired Incremental Reward Learning but Intact 
Episodic Memory in the Multiple Learning 
Strategies Task

After establishing that CA participants were impaired in a 
task that measured solely incremental reward learning, we 
wanted to examine both the specificity and generalizability 
of this impairment by (i) providing an alternative means of 
reward-based decision making alongside incremental learn-
ing and (ii) altering the incremental learning task structure 
to measure responses to reversal events rather than drifting 
probabilities. The multiple learning strategies task was thus 
used to accomplish both of these goals.

Consistent with the results of the incremental learning 
task, CA participants in the multiple learning strategies task 
were less responsive to reward outcomes compared to controls 
(Fig. 3A). Specifically, controls tended to choose the lucky 
deck more than CA participants immediately prior to a reversal 
( �Group×t=t−1 = 0.397, 95% CI = [0.002, 0.807] ), and this tendency was 
disrupted by reversals; CA participants did not show this pat-
tern ( �Group×t=0 = −0.897, 95% CI = [−1.28, −0.535] ) and 
remained below chance performance after a reversal occurred 
(   �Group×t=t+1 = −0.595, 95% CI = [−0.984, −0.21]   ) . 
This indicates that CA participants were unable to learn 
which deck had the higher expected value at any given time 
throughout the task. We next aimed to separately assess 
whether there were any differences between healthy con-
trols and CA participants in the extent to which they chose 
previously seen (old) objects according to their value, which 
is a marker of using episodic memory to guide choices 

throughout the task. Although CA participants and healthy 
controls chose low-value, old objects at nearly identical rates 
( �Group×Value = −0.220, 95% CI = [0.031, −0.454] ), healthy controls 
chose high-value, old objects at a slightly higher rate than CA 
participants ( �Group×Value = 0.667, 95% CI = [0.426, 0.904] ; 
Fig. 3B). This finding indicates that, relative to healthy con-
trols, CA participants’ choices were based primarily on epi-
sodic memory for low- rather than high-valued objects.

While these analyses assessed sensitivity to incremen-
tally constructed value and episodic value separately, we 
next sought to capture the effects of each on participants’ 
choices in a single model. To do so, we used a hybrid choice 
model, which combined a standard Q learning model with 
three inverse temperature parameters that captured each par-
ticipants’ sensitivity to estimated deck value (Deck Value), 
the true value of previously seen objects (Old Value), and 
a bias toward choosing previously seen objects regardless 
of their value (Old Bias; Fig. 3C). The first of these param-
eters measures the extent to which participants incorporated 
incrementally learned value into their choices, while the lat-
ter two measure the extent to which sources related to epi-
sodic memory impacted choice. For each group, we then 
assessed whether these inverse temperatures differed from 
zero and, if so, concluded that participants in that group made 
choices that were affected by each possible source. While 
healthy controls incorporated deck value into their decisions 
( �HC = 3.173, 95% CI = [2.181, 4.189] ), CA participants 
generally did not ( �CA = 0.681, 95% CI = [−0.668, 2.066] ). 
This reward learning deficit was specific to value acquired 
incrementally, however, because CA participants and con-
trols were both sensitive to episodic value, as measured by the 
value of old objects ( �HC = 1.373, 95% CI = [1.095, 1.654] ; 
�
CA

= 1.13, 95% CI = [0.59, 1.643] )  and were both s imi-
larly biased by old objects regardless of their 
v a l u e  (  �

HC
= 1.142, 95% CI = [0.798, 1.477]   ; 

�CA = 0.551, 95% CI = [0.028, 1.056] ). Furthermore, while 
there were no differences between groups for the effects of either 
episodic value ( �Group = 0.244, 95% CI = [−0.311, 0.820] ) 
or bias ( �Group = 0.586, 95% CI = [−0.051, 1.246] ), healthy 
controls were indeed more sensitive to learned deck value than 
CA participants ( �Group = 2.47, 95% CI = [0.362, 4.572]) . 
Finally, we compared the hybrid choice model to a biased 
responder, which again served as a baseline. The hybrid 
choice model outperformed this model, there was no differ-
ence between groups in estimated out-of-sample predictive 
performance ( �Group = −1.631, 95% CI = [−11.425, 8.444] ). 
Importantly, this indicates that the behavior of both CA par-
ticipants and controls was well described by the hybrid choice 
model, which is expected if CA participants are unimpaired at 
episodic value learning.

We additionally had each participant complete a 
subsequent memory test for a subset of objects shown 
during the multiple learning strategies task. To capture 
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performance on this task, we calculated the signal detec-
tion metric d-prime, which represents participants’ abil-
ity to accurately discriminate between objects that were 
shown during the multiple learning strategies task and 
those that were brand new. There was no difference 
in recognition memory performance between groups 
( �Group = −0.487, 95% CI = [−1.144, 0.157] ; Fig.  3D). 
This result provides further evidence that CA participants 
were unimpaired at using episodic memory throughout 
the task relative to their stark impairments in incremen-
tal learning. Lastly, CA participants and healthy controls 
demonstrated no differences in reaction time on this task 

( �Group = −86.40, 95% CI = [−222.28, 44.76] ), suggesting 
that the behavioral differences reported here cannot be 
attributed to motor slowing in CA.

Controlling for Effects of Non‑motor Deficits 
and Disease Subtype

We next sought to ensure that the differences in the tasks 
reported here were specific to deficits in reward learning 
rather than general cognitive impairment. Controlling for 
cognitive impairment is particularly important because 
recent work [43, 44] has suggested that incremental 

Fig. 3   Performance on the multiple learning strategies task. A Deck 
learning performance on the multiple learning strategies task as indi-
cated by the proportion of trials on which the currently lucky deck 
was chosen as a function of how distant those trials were from a 
reversal in deck value. Performance for both healthy controls (HC) 
and CA participants is shown alongside a Bayesian observer with per-
fect episodic memory for visual comparison. Lines represent group 
averages, and bands represent 95% confidence intervals. B Object 
value usage on trials in which a previously seen object appeared. 
Points represent group averages and error bars represent 95% confi-
dence intervals. C Inverse temperature estimates from the Hybrid 

model. Left: Inverse temperature for deck value (Deck Value), which 
captures impacts on choice related to incremental learning. Right: 
Inverse temperatures for old object value (Old Value) and a bias 
toward old objects regardless of their value (Old Bias), which cap-
ture impacts on choice related to episodic memory. Individual points 
represent estimates for each subject, group-level averages are shown 
as filled in points, and error bars represent 95% confidence intervals. 
D Recognition memory performance on the subsequent memory task. 
Individual points represent each participant’s d-prime score, filled in 
points are group-level averages and error bars are 95% confidence 
intervals
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learning experiments tax higher level functions, like execu-
tive control and working memory, in addition to learning 
from reward prediction error. To address this issue and 
assess possible cognitive impairment, we conducted a bat-
tery of neuropsychological measures on CA participants 
(see Methods). Of these, a subset of measures were also 
completed by healthy controls (Supplementary Fig. 1). We 
found no differences in performance between groups on all 
measures except for the backwards digit span task, which 
indexes working memory ability, and on which healthy 
controls scored higher than CA participants (Table  2; 
�Group = −2.57, 95% CI = [−4.18, −0.92] ). Backwards digit 
span scores were thus included as covariates in regression 
analyses where possible (see Methods) in order to control 
for impacts of this performance difference on impairments in 
incremental learning. To further ensure that CA participants’ 

deficient incremental learning was not due to broad cog-
nitive impairment, we also repeated all analyses excluding 
seven CA participants (and their matched controls) with 
mild cognitive impairment (MCI), as indicated by scoring 
lower than 26 on the MoCA (Table 1). While CA partici-
pants with MCI consisted of some of the lowest performing 
participants in our sample (Supplementary Figs. 2–3), there 
we no differences in the results across both tasks when they 
were excluded. It is therefore unlikely that CA participants’ 
impaired reward learning ability is due to either working 
memory deficits or cognitive decline more broadly. A full 
report of these analyses can be found in Appendix 1.

We next sought to further characterize the nature of 
CA participants’ reward learning impairment by looking 
at the relationship between incremental learning sensitiv-
ity, as measured by the Q learning models in each task, 
and performance on our neuropsychological battery. The 
extent to which CA participants learned about cues in the 
incremental learning task related only to total CCAS score 
( r = 0.84, p < 0.001,Bonferroni corrected ; Table 3), sug-
gesting that the specific contributions of the cerebellum to 
cognition may impact performance in this task. The CCAS 
scale was recently developed to measure the exact types of 
cognitive impairment that result from damage to the cerebel-
lum [45]. Because more focal cerebellar lesions tend to lead 
to lower total CCAS scores [46], this provides further evi-
dence of the necessity for the cerebellum to successfully per-
form the incremental learning task. The relationship between 
total CCAS score and performance was driven by the timed 
portions of the CCAS scale (e.g., the Semantic Fluency and 

Table 2   Neuropsychological test regression analysis results

Results of regression analyses assessing differences in neuropsy-
chological test performance between CA participants and healthy 
controls

Measure β estimate 95% credible interval

Backwards Digit Span  − 2.57 [− 4.18, − 0.92]
Forwards Digit Span  − 0.09 [− 1.35, 1.15]
Semantic Fluency 1.54 [− 2.12, 5.14]
Phonemic Fluency 0.04 [− 2.75, 2.88]
Category Switching 1.68 [− 0.76, 4.10]
Similarities  − 0.20 [− 0.50, 0.12]
Go No Go 0.0001 [− 0.33, 0.33]

Table 3   Correlations between 
CA participant-level measures 
and incremental value 
sensitivity

CA participant-level measures consist of total neuropsychological scores and symptom duration, and incre-
mental value sensitivity consists of estimates by the Q Learning model in the incremental learning task and 
as by the Hybrid Q Learning model in the multiple learning strategies task
CCAS cerebellar cognitive affective/Schmahmann syndrome scale, SARA​ Scale for the Assessment and 
Rating of Ataxia, MoCA Montreal cognitive assessment, BDI Beck’s depression inventory, QUIP question-
naire for impulsive-compulsive disorders in Parkinson’s disease
*** p < 0.001

Measure Pearson’s R p value (Bonferroni 
corrected)

Task

Symptom duration  − 0.0661 1 Incremental learning
SARA (total) 0.1067 1 Incremental learning
MoCA (total) 0.5225 0.1885 Incremental learning
CCAS (Total) 0.8419 0.0001*** Incremental learning
BDI (total) 0.2977 1 Incremental learning
QUIP (total)  − 0.3892 0.7356 Incremental learning
Symptom duration  − 0.3699 0.7848 Multiple learning strategies
SARA (total)  − 0.2141 1 Multiple learning strategies
MOCA (total) 0.1438 1 Multiple learning strategies
CCAS (total) 0.3849 0.6887 Multiple learning strategies
BDI (total) 0.4641 0.3141 Multiple learning strategies
QUIP (total)  − 0.074 1 Multiple learning strategies
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Category Switching measures; Table 4), suggesting a potential 
effect of slowed responses in the incremental learning task. 
While CA participants did indeed respond more slowly than 
healthy controls on this task (see above), we controlled for 
this difference in our behavioral analysis. Finally, there was 
no relationship between any measure and incremental learn-
ing ability in the multiple learning strategies task (Table 3).

Finally, we addressed the possibility that the subset of our 
sample of CA participants consisting of diagnoses that were 
less restricted to the cerebellum, namely the three individu-
als with multiple system atrophy (MSA) and the two indi-
viduals with Friedrich’s ataxia (FA), could be responsible 
for the deficits reported here. We repeated all analyses with 
these five participants excluded and found no differences in 
the results (Supplementary Figs. 4–5). A full report of these 
analyses can be found in Appendix 2.

Discussion

The results of the present work demonstrate that individu-
als with cerebellar dysfunction, represented by CA cases in 
our cohort, are impaired at trial-and-error reward learning. 
While the cerebellum and basal ganglia have traditionally 
been treated as making separate contributions to learning 
[5, 21], recent findings have called this dichotomy into ques-
tion [8–19]. This work has suggested that, alongside its role 
in motor learning, the cerebellum likely operates in concert 
with the basal ganglia to support reinforcement learning from 
reward. Our study corroborates these findings from animal 
models [10–19], providing evidence that the human cerebel-
lum is necessary for learning associations from reward. In 
comparison to age- and sex-matched healthy controls, CA 

participants were impaired at reward-based learning from 
trial-and-error. Further, CA participants retained the ability 
to employ an alternative strategy based in episodic memory 
to guide their decisions, demonstrating that this impairment 
is specific to incremental learning. These results challenge the 
idea that the cerebellum is used primarily for motor learning 
and shed light on how multiple neural systems may interact 
with one another to support learning in the non-motor domain.

Our findings join a litany of recent research suggesting that 
the cerebellum plays a broad role in human cognition [22, 
47–49]. Indeed, individuals with damage to the cerebellum 
demonstrate impairment in a wide range of cognitive func-
tions including cognitive control [50] and impulsivity [51]. 
Human functional neuroimaging studies have also revealed 
cerebellar activity in a variety of different non-motor tasks 
[22, 48]. Many of these functions are likely supported by the 
robust bidirectional connections the cerebellum shares with the 
prefrontal cortex [52, 53]. In particular, recent findings have 
indicated that individuals with CA have heightened domain-
specific impulsive and compulsive behaviors, which is a com-
mon symptom of underlying reward system dysfunction [54, 
55]. Our study adds to this work by suggesting that the cerebel-
lum is additionally necessary for reward learning in humans.

While there is growing evidence validating the implication 
of the cerebellum in reward-based learning in animals, there is 
only limited work on this topic in humans. Early imaging stud-
ies, for example, demonstrated cerebellar BOLD activity in 
patients with substance use disorder who performed reward-
based learning tasks [23] and experienced cravings [24], 
and also in response to unexpected reward [25]. However, 
it remains unknown how cerebellar damage impacts reward 
learning, as investigations of reward learning in the cerebel-
lum are rare. While two previous studies employed reward-
based experimental tasks in individuals with isolated ischemic 
lesions of the cerebellum [56, 57], results until this point have 
remained far from conclusive. Thoma et al. (2008) used a 
reward-based learning task consisting of an initial acquisi-
tion phase in which eight participants with cerebellar damage 
were rewarded for learning associations between colors and 
symbols followed by a reversal portion in which they had to 
disremember previously acquired knowledge and learn new 
associations for each cue. While participants with cerebel-
lar damage demonstrated no impairment at acquiring new, 
reward-based knowledge, they were selectively impaired at 
learning from a single reversal. While this study complements 
our findings, we found evidence for more global impairment: 
CA participants in both of our tasks were unable to learn asso-
ciations from reward on a trial-by-trial basis. Rustemeier et al. 
(2016) took a different approach by asking twelve individu-
als with cerebellar damage to learn a simple acquisition task 
from probabilistic feedback and subsequently transfer this 
knowledge to re-arranged stimuli. While participants were 
unimpaired behaviorally at this task, electroencephalographic 

Table 4   Correlations between CA participant CCAS subscale meas-
ures and incremental value sensitivity

Incremental value sensitivity consists of estimates by the Q Learning 
model in the incremental learning task
*p < 0.05

CCAS measure Pearson’s R p value 
(Bonferroni 
corrected)

Semantic Fluency 0.6693 0.033*
Phonetic Fluency 0.6235 0.0749
Category Switching 0.7168 0.012*
Digit Span Fwd (CCAS) 0.295 1
Digit Span Bwd (CCAS) 0.3146 1
Cube Drawing 0.5009 0.4055
Verbal Recall 0.4224 0.9118
Similarities 0.5881 0.1302
Go No Go  − 0.2654 1
Affect 0.2944 1
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(EEG) results revealed that they may process reward-based 
feedback differently from controls. Our findings support this 
interpretation and further suggest that processing of trial-by-
trial feedback is not just different, but impaired, in individuals 
with cerebellar damage. Finally, while other related studies 
showed impairment in learning from reinforcement in partici-
pants with cerebellar damage [20, 58], this work has focused 
primarily on movement-dependent deficiencies.

While our findings suggest that the cerebellum is neces-
sary for incremental reward learning, they cannot speak to the 
neural circuitry underlying this role. One intriguing possibility 
is that the cerebellum may operate in tandem with the basal 
ganglia—canonically seen as the seat of reinforcement learn-
ing in the brain [5, 21]—to learn about reward incrementally. 
Reward prediction error signals in midbrain dopamine neurons 
that provide input to the basal ganglia [27, 29] have also been 
found to be encoded by cerebellar neurons [9, 15, 17, 19]. 
Further, through excitatory projections to the ventral tegmental 
area, the cerebellum has widespread reciprocal connections 
with the basal ganglia and has recently been shown to influ-
ence reward-driven behavior through these projections [8, 59]. 
While reinforcement learning via the basal ganglia and super-
vised learning via the cerebellum have typically been treated 
as fulfilling entirely separate roles [5, 21], these systems appear 
to be more interdependent than previously thought. Future 
investigations of the relationship between the basal ganglia 
and cerebellum are needed to clarify the exact mechanisms 
underlying reinforcement learning in the brain.

Lastly, there are several potential limitations related to 
the nature of our sample that should be considered when 
interpreting these findings. First, cerebellar dysfunction 
in our sample of CA participants was caused by several 
different conditions. While most of these pathologies are 
predominantly restricted to the cerebellum, non-cerebellar 
brain areas and circuits could also be affected, particularly 
in participants diagnosed with either MSA or FA. There 
was, however, no change in the reported reward-based 
learning deficits when these participants were excluded. 
Second, while cognitive impairment due to neurodegen-
erative disease could potentially contribute to some of the 
deficits measured here, we accounted for this possibility by 
establishing that the incremental reward learning deficits 
reported here persist regardless of MCI status. We also col-
lected basic neuropsychological measures from all partici-
pants, and CA participants were not different from controls 
on the vast majority of measures. We focused particularly 
on possible contributions of working memory given recent 
work suggesting that working memory plays an important 
role in incremental reward learning [43, 44]. While CA par-
ticipants and controls performed similarly on the forward 
digit span task, CA participants were somewhat impaired 
at backwards digit span. We controlled for this difference 
by including backwards digit span scores as covariates in 

our analyses. Finally, while our control participants com-
pleted the study online, we accounted for potential variabil-
ity caused by this difference in setting by collecting three 
matched controls for each CA participant in our sample.

Taken together, our findings suggest that the human 
cerebellum is necessary for reward learning. These results 
provide new constraints on models of non-motor learning 
and suggest that the cerebellum and basal ganglia work in 
tandem to support learning from reinforcement.
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