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Abstract 10 

We are often faced with decisions we have never encountered before, requiring us to infer 11 
possible outcomes before making a choice. Computational theories suggest that one way to make 12 
these types of decisions is by accessing and linking related experiences stored in memory. Past 13 
work has shown that such memory-based preference construction can occur at a number of 14 
different timepoints relative to the moment a decision is made. Some studies have found that 15 
memories are integrated at the time a decision is faced (reactively) while others found that 16 
memory integration happens earlier, when memories are encoded (proactively). Here we offer a 17 
resolution to this inconsistency. We demonstrate behavioral and neural evidence for both 18 
strategies and for how they tradeoff rationally depending on the associative structure of memory. 19 
Using fMRI to decode patterns of brain responses unique to categories of images in memory, we 20 
found that proactive memory access is more common and allows more efficient inference. 21 
However, participants also use reactive access when choice options are linked to more numerous 22 
memory associations. Together, these results indicate that the brain judiciously conducts 23 
proactive inference by accessing memories ahead of time in conditions when this strategy is most 24 
favorable. 25 

Introduction 26 

Some decisions are made repeatedly, offering the opportunity to learn directly about an option’s 27 
value through past experiences with its outcome. However, decisions often consist of a choice 28 
between options whose outcomes have not been directly experienced before. Computational 29 
theories of planning suggest that one way to approach such decisions is by knitting together 30 
separate relevant memories through mental simulation1–3. The ability to flexibly combine 31 
information in this way is central to intelligence: it frees us from having to decide based on direct 32 
trial-and-error experience alone and enables us to make inferences and to plan novel courses of 33 
action using cognitive maps or internal models4–8. 34 

The process of drawing inferences requires accessing relevant memories and recombining or 35 
integrating across them to build new relationships. Studying memory access is therefore one way 36 
to shed light on the covert mechanisms that give rise to inferential choice. Yet previous work 37 
attempting to probe this connection has left open a critical gap in our understanding of how and 38 
when memory integration supports inference. In particular, some studies have claimed that 39 
memories are accessed at the time a choice is faced2,9,10, while other studies have found that 40 
memory access occurs much earlier, when relevant memories are first encoded11,12. These two 41 
approaches differ not just in the timepoint of memory access, but also point to distinct 42 
mechanisms. Specifically, integrating memories during a decision requires “on the fly” processing, 43 
which is likely to take time, whereas integrating memories earlier suggests that the new model for 44 
inference already exists when a choice is later made, yielding more efficient decisions11,13,14. It 45 
has been suggested, but not yet empirically tested, that there may be some normative explanation 46 
for the variation between these two approaches15. In the present study, we aimed to address this 47 
gap by studying both possibilities in a single experimental design. We sought to first confirm the 48 
normative advantages that early memory access confers and then to investigate how changing 49 
the structure of memory access can rationally shift this process to happen later, at decision time. 50 

The role of memory integration in inference is often studied with multi-phase tasks that first seed 51 
relevant associative memories and then test whether people integrate them when probed to make 52 
decisions. A classic task in this vein, which we build upon here, is sensory preconditioning16. In 53 
sensory preconditioning, participants are first trained to associate two stimuli that occur in 54 
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succession (A→B). Then, in a separate phase, the B stimulus is associated with reward. The 55 
critical question is whether people infer that the A stimulus is also associated with reward. This is 56 
tested in the final decision phase, when participants are asked to choose between A and another 57 
control stimulus (which is equally familiar but lacks the indirect reward association). Humans and 58 
non-human animals alike tend to prefer A despite never directly experiencing its association with 59 
reward11,12,14,16. Neural studies of sensory preconditioning and similar tasks have revealed two 60 
potential mechanisms, each predicting memory integration either before or during choice, that 61 
may lead to this same behavioral effect. 62 

The most typical explanation for inference in tasks like sensory preconditioning, widely assumed 63 
in theories of decision making dating back to Tolman8, envisions that choosing A reflects 64 
prospective mental simulation at decision time: in this case, retrieving the B-reward association 65 
when evaluating whether to choose A. This, in turn, is thought to be a minimal case of our more 66 
general capacity for constructive, deliberative forward planning, embodied in theories of model 67 
based reinforcement learning, which iteratively evaluate candidate actions prospectively over 68 
multiple steps using a learned internal model of task contingencies. By examining neural 69 
signatures of memory retrieval, it has been possible to investigate how memory access actually 70 
relates to successful model-based inference. Yet, these studies have yielded mixed support for 71 
this account. Some evidence suggests that both humans and non-human animals engage in 72 
prospective retrieval at decision time, and that this pattern is associated with inferential 73 
performance4,9,10,17–19. However, there is also evidence that associative recall may occur long 74 
before a decision is ever faced11,12,20–23. 75 

These latter findings imply a second explanation for inference in these tasks: that the value of 76 
options may be pre-computed when relevant information like reward is first encoded, thereby 77 
preempting the need for evaluating potential outcomes later at choice time. In some studies of 78 
sensory preconditioning, for instance, it has been found that when B is presented during reward 79 
learning, A is concurrently retrieved and directly associated with reward11,12. Such a strategy is 80 
feasible because, at this time, participants have already been provided with all of the components 81 
necessary to form a complete model of the task. Perhaps analogously, in rodent spatial navigation 82 
tasks, hippocampal place cells often briefly represent trajectories in front of the animal17–19, a 83 
potential substrate for prospective evaluation. However, otherwise similar “replay” events can 84 
instead reflect backward or altogether nonlocal trajectories at the time of reward24–27, potentially 85 
supporting a spatial analogue of the alternative inference strategy. 86 

An emerging idea is that these different inference mechanisms may be special cases of a more 87 
general set of computations that share the common goal of integrating memories to infer action 88 
values, but that access memories at different times: either proactively before they are needed or 89 
reactively, once required for choice15,28. This in turn raises questions about how these strategies 90 
are balanced or adaptively deployed, and whether such control might explain variable results 91 
across studies. Indeed, the possibility of proactive computation implies that the brain must 92 
somehow be judicious about which memories it accesses, and when, since there are so many 93 
possible later actions that might be contemplated. 94 

This idea, while compelling, is still largely untested, and raises a number of questions about how 95 
and when different strategies are deployed, which we aimed to address in this study. First, is it 96 
indeed the case that a proactive memory access strategy exists and can support inferential choice 97 
equivalent to a reactive one? Second, what are the tradeoffs of the two approaches: if access 98 
occurs proactively, does it indeed reduce the need for computation at decision time? Finally, do 99 
people rely differentially on this strategy at times when it would be sensible to do so? 100 
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Here we aimed to answer these questions by attempting to alter participants’ reliance on proactive 101 
inference. We had three primary hypotheses. First, we aimed to confirm earlier (but inconsistently 102 
reported) results that sensory preconditioning can be solved with proactive memory access at the 103 
time of reward learning. Next, because proactive inference offers the advantage of a pre-104 
computed value association, we hypothesized that this approach may allow for more efficient 105 
future decisions–i.e. decisions that are faster and more accurate. Finally, we hypothesized that 106 
reliance on this strategy would adapt under different circumstances, which we operationalized by 107 
manipulating how difficult it is to access and integrate relevant memories. Drawing upon a rich 108 
tradition of research on associative memory29, we reasoned that having multiple relevant 109 
associations with an experience should, at any timepoint, induce competition between them, 110 
making their retrieval for use in inference less likely. 111 

To test these hypotheses, we developed a novel learning and decision making task based on 112 
sensory preconditioning, and measured memory retrieval at multiple timepoints of this task while 113 
scanning participants with fMRI (Figure 1). To capture putative reactivation of associations in 114 
memory in the service of inference, we exploited the fact that viewing different visual categories 115 
(e.g. faces, scenes, and objects) elicits unique activity in visual cortex10,11,30,31. We used images 116 
from these different categories for each of the different stimuli, which allowed us to measure 117 
whether reactivation of associated images in memory occurred during either reward learning, 118 
signifying proactive inference, or during decision making, signifying reactive inference. We 119 
predicted that proactive memory access during reward learning should result in more efficient 120 
later choices, and that reactive memory access during choice itself should have the opposite 121 
effect. 122 

To address our third hypothesis specifically, we further varied the number of competing 123 
associations with a given stimulus by training participants on stimulus-stimulus relationships 124 
under two different conditions. In one condition, two antecedent stimuli each predicted a single 125 
consequent stimulus; we refer to this as the Fan In condition. By contrast, in the Fan Out condition, 126 
a single antecedent predicted two possible consequents. The logic of this manipulation is that the 127 
Fan In condition induces greater retrieval competition between memories of antecedent stimuli 128 
when the consequent stimulus is presented during the reward learning phase. We therefore 129 
predicted that there should be increased reliance on reactive inference for stimuli in the Fan In 130 
condition relative to Fan Out condition.  131 
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132 
Figure 1. Task design and inference strategies. A) Task structure. Participants (n=39) underwent fMRI 133 
scanning while completing a three-part experiment with two different conditions, based on sensory 134 
preconditioning. The phases were similar for both conditions, which differed only in their specific associative 135 
structure. In phase one, stimulus learning, participants learned associations between several pairs of 136 
images (faces, scenes, or objects). Unknown to participants, there were two types of trials governing how 137 
these associations appeared. Fan In trials consisted of one of two possible antecedent A images followed 138 
by one consequent B image. Fan Out trials consisted of one antecedent A image followed by one of two 139 
possible consequent B images. Example categories for each image are shown here, and this was 140 
counterbalanced across participants. In phase two, reward learning, participants learned that a subset of 141 
consequent B images led to a reward, while others did not lead to reward. Finally, in phase three, the 142 
decision phase, participants chose between two images. Choices between consequent B images were 143 
used as test trials, whereas choices between antecedent A images were used as transfer trials. B) Example 144 
events. An example of the sequence of task events seen by participants in each phase. C) Possible 145 
inference strategies. Participants can engage in either of two inference strategies: proactive inference, at 146 
the time of reward learning, or reactive inference, at the time of the decision. During decision making, 147 
proactive inference does not require the integration of a memory with value, as this association has already 148 
been performed during reward learning. Due to differences in the number of competing antecedent 149 
memories at reward learning, we expected reactive inference to be used more for Fan In stimuli. 150 
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151 
Figure 2. Participants successfully learned and transferred across both conditions, but the 152 
relationship between speed and accuracy differed across conditions.  A) Test decisions (i.e. those 153 
between images that were directly associated with reward or neutral outcomes during reward learning) 154 
were highly accurate, reflecting successful learning for both conditions. B) Transfer decisions (i.e. those 155 
between images that were indirectly associated with reward or neutral outcomes via the stimulus learning 156 
phase) were also highly accurate, indicating successful inference for both conditions. Filled points represent 157 
group-level means whereas white points represent means for each pair of images seen by participants. 158 
Error bars are 95% confidence intervals. C) The relationship between the proportion of accurate transfer 159 
choices and reaction time for each image pair revealed that faster decisions were more accurate and that 160 
this relationship was stronger for the Fan Out condition, in which the structure was more amenable to 161 
proactive integration. Lines represent regression fits and bands represent 95% confidence intervals. All 162 
visualizations show data at the stimuli level, and statistical analyses were conducted using mixed effects 163 
models that additionally assessed these effects within each participant while accounting for variation across 164 
participants. 165 

Results 166 

Behavioral evidence for proactive inference and its modulation by retrieval 167 
competition 168 

We first examined whether participants learned to directly associate consequent stimuli with 169 
reward, and whether they transferred value to associated antecedent images. To assess this, we 170 
analyzed participants’ test and transfer choices during the decision phase. On test choices, 171 
participants chose between consequent images that were directly associated with either a reward 172 
or neutral outcome during the reward learning phase. Participants were highly accurate and 173 
tended to choose the rewarded consequent image over the neutral consequent image (𝛽! =174 
	5.009, 	95%	𝐶𝐼 = [4.085, 	6.279]; Figure 2A). There was no difference between the Fan In and 175 
Fan Out conditions (𝛽"#$%&'&#$ = 	0.321, 	95%	𝐶𝐼 = [−1.251, 	2.128]), indicating that participants 176 
learned similarly in both. 177 

Next, we examined participants’ transfer choices during the decision phase (Figure 2B). These 178 
decisions consisted of choosing between antecedent images that were paired with consequent 179 
images during the initial stimulus learning phase. Critically, successful transfer of value to these 180 
images involves relying on memory for the paired association. We found that participants tended 181 
to choose the antecedent image that was paired with the rewarded consequent image (𝛽! =182 
	2.075, 	95%	𝐶𝐼 = [1.283, 	2.896]), indicating that most participants used memory to transfer value. 183 
There was no difference in transfer performance between Fan In and Fan Out choices 184 
(𝛽"#$%&'&#$ = 	0.572, 	95%	𝐶𝐼 = [−0.157, 	1.284]), demonstrating that the manipulation of 185 
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associative structure between conditions had no effect on the degree to which value was 186 
transferred. 187 

Having established that participants infer the value of associated antecedent images in both 188 
conditions, we next sought to gain initial insights into when memories are accessed to support 189 
this value transfer. We aimed to differentiate between two possible strategies for inference, each 190 
occurring at different timepoints in our task: either proactively at reward learning or reactively at 191 
decision time. One hypothetical hallmark of proactive inference is that it should promote accuracy 192 
without further integration at choice time, resulting in faster transfer decisions. Thus, if its 193 
deployment varies across stimuli, it predicts an unusual inverted speed-accuracy relationship 194 
whereby faster decisions tend also to be more accurate. In contrast, successful reactive inference 195 
requires integration at choice time, resulting in slower transfer decisions and (to the extent its 196 
deployment governs successful performance) a more typical relationship between slower 197 
decisions and higher accuracy. 198 

Overall, we found that choices reflecting memory-based transfer were faster (𝛽(' =199 
	−0.611, 	95%	𝐶𝐼 = [−0.945,	−0.287]; Figure 2C), suggesting that participants tended to infer 200 
proactively. Yet we also found that this relationship was stronger in the Fan Out than the Fan In 201 
condition (𝛽"#$%&'&#$:(' =	−0.465, 	95%	𝐶𝐼 = [−0.937,−0.017]), consistent with our expectation 202 
that the Fan In condition is less amenable to proactive inference. Together, these behavioral 203 
findings suggest that while proactive inference dominated performance overall, reactive inference 204 
may have been more commonly observed in the Fan In than the Fan Out condition. 205 
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 206 

Figure 3. Multivariate pattern analysis methodology and decoding accuracy. A) MVPA analyses 207 
consisted of four primary steps. Step 1: Least Squares Separate32 was used to isolate a beta map for each 208 
trial and participant across all phases of the experiment. These betas were then used as input for the MVPA 209 
pipeline. Step 2: A searchlight analysis consisting of a one versus all three-way logistic regression was then 210 
used to identify voxels that could discriminate between all three categories during the stimulus learning 211 
phase. Step 3: Voxels identified during the previous step were then used to mask the whole brain during 212 
testing of the classifier on the reward learning and decision phases. Step 4: Evidence of reactivation on 213 
each trial was then assessed by ranking the individual category probabilities accordingly. B) Group-level 214 
whole-brain maps (FDR corrected; q<0.05) of voxels that discriminate between all three categories above 215 
chance. C) Classification accuracy for the decoding model trained on the stimulus learning phase and 216 
tested on the reward learning and decision phases. Accuracy is shown here as the weighted F-score. Points 217 
represent accuracy for each participant and the thick line represents group-level average accuracy. Dotted 218 
lines represent the 95th percentile of a permutation distribution over test category labels. 219 
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Neural evidence for proactive and reactive inference and their modulation by 220 
retrieval competition 221 

While examining participants’ choices allowed us to assess the different behavioral signatures of 222 
proactive and reactive inference, choice behavior alone cannot capture when exactly memories 223 
were accessed throughout the task. To gain further insight into when memories were recalled to 224 
support inference, we used fMRI to obtain a neural signature of memory reactivation at different 225 
timepoints in our task (Figure 3A). We first used runs of fMRI data collected from the stimulus 226 
learning phase to train a classifier to distinguish between each image category: faces, scenes or 227 
objects. We then tested this classifier on activity from the reward learning and decision making 228 
phases, and assessed its ability to identify the category of the image that was presented to 229 
participants. As expected, voxels that differentiated accurately between categories were located 230 
primarily across the bilateral occipito-temporal cortex (Figure 3B). When tested on the reward 231 
learning and decision making phases, the classifier accurately differentiated each category from 232 
the others (Faces: 𝛽! = 0.161, 	95%	𝐶𝐼 = [0.134, 	0.189]; Scenes: 𝛽! = 0.151, 	95%	𝐶𝐼 =233 
[0.123, 	0.180];	Objects: 𝛽! = 0.066, 	95%	𝐶𝐼 = [0.041, 	0.093]; Figure 3C). 234 

With a classifier in hand that could distinguish between each category based on BOLD activity 235 
patterns seen during the reward learning and decision phases, we were poised to assess the 236 
degree to which memories were reactivated for inference, and when. Specifically, to measure 237 
memory reactivation, we examined the individual category probabilities from the classifier on 238 
every trial, and identified those in which the probability of the associated image category (as 239 
opposed to the presented category) was particularly high (see Methods). This analysis allowed 240 
us to label every trial as one in which reactivation of the relevant associated category in memory 241 
was either likely or unlikely. 242 

To determine whether memories were accessed in accordance with the patterns of inference we 243 
observed behaviorally, we focused on three main goals for the analyses. First, because 244 
participants’ choice behavior at transfer suggested a tradeoff between speed and accuracy most 245 
consistent with proactive inference, we sought to examine whether greater memory reactivation 246 
during the reward learning phase indeed results in more efficient (faster and more accurate) 247 
choices. Second, because we found that this effect was weaker during Fan In compared to Fan 248 
Out transfer choices (when there was relatively more retrieval competition between memories 249 
during reward learning and less during decision making), we sought to determine whether this 250 
behavioral shift was supported by different memory access patterns across conditions. Third, we 251 
predicted that it would be most strategic for participants to proactively infer prior to choice time for 252 
Fan Out trials, but to reactively infer at choice time for Fan In trials and therefore tested this by 253 
characterizing individual differences in memory access between participants. 254 
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255 
Figure 4. Proactive inference improves decision making ability. Greater memory reactivation at reward 256 
time relative to decision time - a marker of proactive inference - is associated with more effective transfer 257 
decisions. A) Correct transfer decisions were more likely for pairs with greater memory reactivation during 258 
reward learning relative to decision making. B) Response times were marginally faster for pairs with greater 259 
memory reactivation during reward learning relative to decision making. Points represent average 260 
performance for each image pair seen by participants. Lines represent regression fits and bands represent 261 
95% confidence intervals. Visualizations show data at the stimuli level, and statistical analyses were 262 
conducted using mixed effects models that additionally assessed these effects within each participant while 263 
accounting for variation across participants. 264 

To first examine whether memory access during reward learning leads to more efficient choices, 265 
we quantified the difference in memory reactivation during image viewing at reward learning and 266 
decision time. This yielded an index of proactive inference for each pair of images. We focused 267 
on the Fan Out condition because the design allowed us to measure reactivation for this condition 268 
at both of these time points (for the Fan In condition, the design only allows measuring reactivation 269 
at decision time; see Methods). When there was more evidence of proactive inference – i.e. when 270 
memory reactivation was greater at the time of reward learning relative to that of decision making 271 
- transfer choices were both more accurate (𝛽∆(+,"'&-,'&#$ = 	0.302, 	95%	𝐶𝐼 = [0.0384, 0.593]) and 272 
marginally faster (𝛽∆(+,"'&-,'&#$ =	−37.902, 	90%	𝐶𝐼 = [−75.273,	−2.508], 95%	𝐶𝐼 =273 
[−82.823, 3.180]; Figure 4). This result suggests that using memory to transfer value via proactive 274 
inference offers the advantage of more efficient choices in the future. 275 

We next examined whether the Fan In and Fan Out conditions affected memory access patterns, 276 
focusing on the time of choice because this was the timepoint at which we were able to assess 277 
reactivation in both conditions (see Methods). In line with participants’ behavior, we found that 278 
during the decision phase, memories of associated consequent images were reactivated more 279 
frequently for Fan In than Fan Out transfer decisions (𝛽"#$%&'&#$ = 	0.119, 	95%	𝐶𝐼 =280 
[0.051, 	0.184]; Figure 5A). This result indicates that reactive inference is more likely to occur 281 
when proactive inference is disadvantaged due to increased competition between memories for 282 
retrieval prior to choice. 283 
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284 
Figure 5. Reactive inference is more likely in the Fan In than Fan Out condition. A) Reactivation during 285 
the decision phase was greater for Fan In than Fan Out trials. Filled points represent group-level means, 286 
error bars are 95% confidence intervals, and thin lines represent individual subject slopes. B) Greater 287 
memory reactivation at decision time, a marker of reactive inference, is associated with less effective 288 
transfer decisions for Fan Out but not Fan In image pairs. Points represent average performance for each 289 
image pair seen by participants. Lines represent regression fits and bands represent 95% confidence 290 
intervals. C) Participants who showed greater reactivation for Fan In relative to Fan Out trials during 291 
decision making also preferentially reactivated more for Fan Out trials during reward learning. Points 292 
represent individual subjects, the line represents a linear regression fit, and the band represents a 95% 293 
confidence interval. 294 

The behavioral findings showed that reactive inference was associated with a lower proportion of 295 
successful transfer decisions in the Fan Out relative to the Fan In condition (Figure 2C). This 296 
effect may reflect the fact that, due to competition, proactive inference is easier and reactive 297 
inference is correspondingly harder, making it less likely to be successful in the Fan Out condition. 298 
We therefore predicted that the neural measure of memory reactivation at decision time should 299 
likewise be associated with less successful value transfer in the Fan Out condition. Indeed, we 300 
found that Fan Out transfer decisions were less accurate when antecedent memories were 301 
reactivated at decision time (𝛽(+,"'&-,'&#$ =	−0.300, 	95%	𝐶𝐼 = [−0.625,	−0.001]; Figure 5B). 302 
Further, no such effect was found in the Fan In condition (𝛽(+,"'&-,'&#$ =	−0.086, 	95%	𝐶𝐼 =303 
[−0.255, 	0.075]; Supplementary Figure 1). This result lends additional support to the 304 
interpretation that the manipulation of associative structure increased participants’ relative use of 305 
reactive inference in the Fan In condition. 306 

Finally, we assessed the idea that it would be strategic to proactively infer prior to choice time for 307 
Fan Out trials, and to reactively infer at choice time for Fan In trials. We examined whether 308 
individuals who tend to reactivate memories more for Fan In relative to Fan Out trials at decision 309 
time also reactivated memories more for Fan Out trials during the reward learning phase. That is, 310 
we asked whether participants’ ability to appropriately deploy one of these strategies also 311 
predicted appropriate deployment of the other. We found that this was indeed the case—312 
participants who reactivated memories more for Fan In transfer decisions relative to Fan Out 313 
transfer decisions also reactivated memories for Fan Out stimuli at reward learning 314 
(𝛽∆(+,"'&-,'&#$ = 	0.027, 	95%	𝐶𝐼 = [0.003, 	0.050]; Figure 5C). This result suggests that those 315 
participants who were most sensitive to the presence of retrieval competition at either timepoint 316 
strategically modulated when they accessed their memories to perform inference. 317 

A B C

Fan In
Fan Out
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Discussion 318 

Research on sequential decision making has found that the process of linking memories to 319 
support inference is well described by theories based on model-based reinforcement learning4–320 
6,9,10. Numerous studies have shown that memory-based inference can occur at a number of 321 
different timepoints relative to the moment a decision is made10–12,18,19,22,23,33,34. However, the 322 
conditions that lead some memories to be accessed later than others have remained unclear. 323 
Here we developed a task to directly test multiple hypotheses about the purpose and adaptability 324 
of memory access in inference. Using fMRI to decode patterns of BOLD response unique to the 325 
categories of images in memory, we found that participants primarily accessed memories 326 
proactively, but this pattern was also sensitive to the situation: when a choice option had multiple 327 
past associations, participants were more likely to defer inferring relationships between stimuli 328 
and outcomes until decisions were made. We also found neural and behavioral evidence that 329 
reinstating memories prior to decision making facilitates faster and more accurate inference, 330 
suggesting that it is adaptive to plan in advance when possible. Together, these results indicate 331 
that the brain judiciously conducts proactive inference, accessing memories proactively in 332 
conditions when this is most favorable. 333 

These findings add empirical support to predictions from computational work on model-based 334 
reinforcement learning. This type of learning grants agents the ability to compose sequences of 335 
simulated experience from a world model in order to discover the consequences of never 336 
experienced actions. The process of simulating potential actions can occur in a forward manner, 337 
by adding up expected immediate rewards over some future trajectory, or backwards, by 338 
propagating value information from a destination state to a series of predecessors. These patterns 339 
have been formalized by a number of different algorithms15,35,36, and recent work has provided a 340 
rational account of when each is most useful for decision making15. 341 

Specifically, Mattar and Daw (2018) theorized that memories that are particularly likely to increase 342 
future expected reward will be prioritized for reinstatement during inference and planning. 343 
Formally, they proposed that the expected utility of accessing a past experience can be 344 
decomposed into the product of two terms: need and gain. Need quantifies how likely an 345 
experience is to be encountered again, and gain captures how much reward is expected from 346 
improved decisions if that experience is reinstated. A critical feature of this model is that when the 347 
need term dominates, memories tend to be accessed reactively at choice time, but if instead the 348 
gain term dominates, memories tend to be accessed proactively following the receipt of reward. 349 
The present findings generally support this theory. In particular, gain increases for an antecedent 350 
when choices fan out, favoring proactive memory access, while need increases for consequents, 351 
promoting reactive choice-time memory access, as they fan in. Thus, antecedents that are 352 
associated with many consequents (i.e. that fan out) are more likely to be reinstated upon learning 353 
that a consequent is rewarded, because there is much to gain from updating future decisions 354 
made upon future encounters with the antecedent. Likewise, antecedents which deterministically 355 
lead to a single consequent (i.e. that fan in) imply greater need for that consequent, and are more 356 
likely to reinstate it at decision time. Importantly, while our findings are consistent with this 357 
framework, they were also designed to be predicted by more intuitive, qualitative reasoning about 358 
the degree of competition among different memories, and so go beyond any single theory of 359 
prioritization for memory access. 360 

In addition to findings from sensory preconditioning demonstrating that humans use memories for 361 
inference of decision making, a number of other studies have shown that memory-based 362 
inference may also take place offline, during periods of rest or sleep before choice. This approach 363 
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is advantageous because it offloads computation to otherwise unoccupied time. In humans, fMRI 364 
research has revealed that memories are reactivated during periods of rest following reward20,21 365 
and that this reinstatement can enhance subsequent memory performance37,38. Importantly, such 366 
offline replay of past memories during rest has been shown to facilitate later integrative 367 
decisions22,23. Parallel work in rodents has demonstrated that hippocampal replay of previously 368 
experienced spatial trajectories is observed during rest and sleep39–41, and that rewarded 369 
locations are replayed more frequently25. These results indicate another way in which inferences 370 
may be drawn offline, well before constituent memories are needed for choice. An important 371 
direction for future work will be to see if rational considerations, such as sensitivity to competition 372 
between memories, also affect the likelihood, or targets of, offline inference. 373 

Another avenue for future study that we did not touch upon here involves the role of dopamine in 374 
supporting the integration of memories with reward to guide behavior. Although the dopaminergic 375 
system has traditionally been thought to support habitual learning from direct experience, recent 376 
results suggest that dopamine may also support integrative evaluations of actions through the 377 
flexible combination of past experience42,43. Our task may provide an opportunity to further 378 
elucidate the role of dopamine in this process. Despite being solved in different ways, both of the 379 
conditions in our task are dependent upon the flexible expression of knowledge about stimulus 380 
associations. Therefore, if dopamine is necessary for the acquisition of model-based associations, 381 
as has been recently suggested43, we expect it to be involved in both conditions equally. This 382 
prediction could, for example, be tested by examining how integrative choice behavior in the 383 
present task is affected by dopamine depletion in Parkinson’s disease. 384 

Recent behavioral work in humans has also shown that a strategy for backwards prediction similar 385 
to the proactive inference strategy we measured here provides benefits for a number of different 386 
types of decisions44. In particular, this study demonstrated that such a strategy is relied upon more 387 
often in environments where the number of states that follow a starting state outnumber those 388 
that precede a rewarded state. Using a similar manipulation coupled with more direct assays of 389 
strategy use, our results provide convergent evidence for this idea. Our study further enhances 390 
understanding of proactive and reactive approaches to inference by grounding each of these 391 
strategies in the mechanisms of memory. 392 

Separately, one shortcoming of our study was that, due to our design, we were unable to isolate 393 
memory reactivation when consequent images from the Fan In condition were presented during 394 
reward learning. In practice, this limited our contrasts between conditions to decision time; and 395 
our contrasts between timepoints to the Fan Out condition. This was because our metric of 396 
memory reactivation was conservative in the sense of being selective to the specific relevant 397 
candidate for classification. In particular, in addition to the category actually present on the screen 398 
being most strongly decoded, we required that the relevant associate be more strongly activated 399 
than the irrelevant foil to declare reactivation successful. However, at reward time in the Fan In 400 
condition, both categories are relevant associates, so this comparison was not possible. One 401 
possibility to skirt this issue in future work may be to present images of a fourth entirely unrelated 402 
category. We did not pursue this direction in the present study to minimize the complexity of the 403 
design. Future complementary work may explore these issues in more depth in order to allow for 404 
cleaner measurement of reactivation when antecedent images fan in during reward learning. 405 

In conclusion, we have demonstrated that the statistical structure of training experience impacts 406 
whether inference from memory occurs before or during decision making. This finding suggests 407 
that standard model-based prospective inference is not unique, but is instead one of a general 408 
set of computations that access memory at different times. Together, these findings further help 409 
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to explain why different studies have observed memory integration to support choice at different 410 
times, and suggest that different inference strategies may be recruited depending on their efficacy 411 
for the task at hand. 412 

Materials and Methods 413 

Participants 414 

A total of 40 participants (19 M, 21 F) between the ages of 18 - 35 were recruited from the 415 
Columbia University community. Participants were right-handed, had normal or corrected-to-416 
normal vision, took no psychiatric medication, and had no diagnosis of psychological disorders. 417 
One participant was removed from the analyses due to both failing to understand the instructions 418 
of the task and missing responses on over half of the decision trials. The remaining 39 participants 419 
had a mean age of 21.9 with a range of 19-35 and were included in the reported sample. Informed 420 
consent was obtained at the beginning of the session and all experimental procedures were 421 
approved by the Columbia University Institutional Review Board. 422 

Experimental Task 423 

Participants completed a three-part associative learning task while undergoing an fMRI scan. In 424 
the first phase of the experiment, stimulus learning, participants were tasked with learning pairs 425 
of images presented one at a time. Each trial consisted of a single image (A; 1.5s), followed by a 426 
interstimulus interval in which a fixation cross was displayed (exponentially jittered with mean=3s, 427 
min=0.5s, max=12s), followed by another image (B; 1.5s), and finally an intertrial interval in which 428 
another fixation cross was displayed (exponentially jittered with mean=3s, min=0.5s, max=12s). 429 
In order to ensure that participants were paying attention, they were asked to press a button box 430 
with their index finger for the first image and with the middle finger for the second image in a pair. 431 
Participants were shown 16 different pairs of images 5 times each for a total of 80 trials. Trials 432 
were spread across two runs of 40 trials each. Images came from one of three categories, either 433 
a face, a scene, or an object. In the second phase of the experiment, reward learning, participants 434 
were tasked with learning that a subset of B images from the stimulus learning phase led 435 
deterministically to reward, while another subset of images led deterministically to a neutral 436 
outcome. Each trial consisted of a single image (1.5s), followed by an interstimulus interval in 437 
which a fixation cross was displayed (2s), followed by the outcome (either a dollar bill or a gray 438 
rectangle; 1.5s), and then finally an intertrial interval (exponentially jittered with mean=2.5s, 439 
min=0.5s, max=10s). Participants were told to withhold a response for the image and to respond 440 
with their index finger when a dollar was shown and with their middle finger when a gray rectangle 441 
was shown. Participants saw each of 8 images 10 times for a total of 80 trials. Trials were spread 442 
across two runs of 40 trials each. During the third and final phase of the experiment, the decision 443 
phase, participants were tasked with deciding between two images of the same category (either 444 
A v. A or B v. B) presented on the screen simultaneously. Each trial consisted of a choice 445 
(max=2s), a confirmation in which a green rectangle appeared around their choice (2s-reaction 446 
time), and then an intertrial interval (exponentially jittered with mean=2.5s, min=0.5s, max=10s). 447 
Participants pressed with their index finger to choose the image on the left hand side of the screen 448 
and with their middle finder to choose the image on the right hand side of the screen. Participants 449 
made 78 choices across a single run of this phase. Interstimulus intervals and trial ordering was 450 
optimized to minimize the correlation between events throughout each phase of the task. 451 

The pairs of stimuli presented throughout the experiment fell into one of two conditions that were 452 
unknown to participants: Fan Out and Fan In trials. Fan Out trials consisted of one A image that 453 
could be followed by either of two B images, while Fan In trials consisted of either of two A images 454 
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followed by one B image. During stimulus learning, eight pairs of images fanned in, while another 455 
eight fanned out. Of the eight pairs from each condition, there were two pairs of images for each 456 
of four possible combinations (e.g. Fan In: A1-B1; A2-B1; A4-B4; A5-B4; Fan Out: A3-B3; A3-B3; 457 
A6-B5; A6-B6). During reward learning, four B images from each condition were shown (e.g. Fan 458 
In: B2 x2; B5 x2; Fan Out: B1 x2; B4 x2) such that two from each condition were paired with 459 
reward (e.g. Fan In: B1; Fan Out: B2) and two were paired with a neutral outcome (e.g. Fan In: 460 
B4; Fan Out: B5). Finally, during the decision phase, participants made choices between B 461 
images that had been directly associated with a reward or neutral outcome (test choices) and 462 
between A images that had been indirectly associated with these outcomes (transfer choices). 463 
Test (e.g. Fan In: B1 v B4; Fan Out: B2 v B5) and transfer (e.g. Fan In: A1 v A4; A2 v A5; Fan 464 
Out: A3 v A6) choices were made between images from the same condition, and never between 465 
images from different conditions. 466 

Participants were given a cover story to aid their learning throughout the task. Specifically, 467 
participants were told that they were a photographer visiting a new city and would be taking 468 
different buses to different locations. At each location, they would be shown a picture they had 469 
taken there, and the purpose of the first phase was to learn which photos were taken along each 470 
bus route. Then, during the reward learning phase, participants were told that they had returned 471 
from their trip and had sent their photos to clients for potential purchase. They were then shown 472 
which photos had been purchased and which had not, and their goal was to learn this information. 473 
Lastly, during the decision phase, participants were told that they were planning a new trip to the 474 
city and were tasked with deciding between bus routes (represented by photos taken on each 475 
route) that would take them to locations where they had taken photos their clients purchased. 476 
Participants were instructed to use what they had learned (i.e. which photos were taken along the 477 
same route and which were or were not purchased) to inform their choices. 478 

MRI Acquisition 479 

MRI data were collected on a 3 T Siemens Magnetom Prisma scanner with a 64-channel head 480 
coil. Functional images were acquired using a multiband echo-planer imaging (EPI) sequence 481 
(repetition time = 1.5s, echo time = 30ms, flip angle = 65˚, acceleration factor = 3, voxel size = 2 482 
mm iso, acquisition matrix 96 x 96). Sixty nine oblique axial slices (14˚ transverse to coronal) were 483 
acquired in an interleaved order and spaced 2mm to achieve full brain coverage. Whole-brain 484 
high resolution (1 mm iso) T1-weighted structural images were acquired with a magnetization-485 
prepared rapid acquisition gradient-echo (MPRAGE) sequence. Field maps consisting of 69 486 
oblique axial slices (2 mm isotropic) were collected to aid registration. 487 

Imaging Data Preprocessing 488 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.6, 489 
which is based on Nipype 1.7.0.45 490 

Anatomical Data Preprocessing 491 

Each participant’s T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 492 
with N4BiasFieldCorrection46, distributed with ANTs 2.3.347 and used as a reference image 493 
throughout the workflow. The reference image was then skull-stripped with 494 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 495 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-496 
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast48 (FSL 497 
5.0.9). Volume-based spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 498 
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version 2009c (MNI152NLin2009cAsym) standard space was performed through nonlinear 499 
registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both the T1w 500 
reference and the T1w template images. 501 

Functional Data Preprocessing 502 

For each of the 5 BOLD runs per subject (two stimulus learning runs, two reward learning runs, 503 
and one choice run), the following preprocessing was performed. First, a reference volume and 504 
its skull-stripped version were generated using a custom methodology of fMRIPrep. A B0-505 
nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) 506 
references with opposing phase-encoding directions, with 3dQwarp49 (AFNI 20160207). Based 507 
on the estimated susceptibility distortion, a corrected EPI reference was calculated for a more 508 
accurate co-registration with the anatomical reference. The BOLD reference was then co-509 
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 510 
registration50. Co-registration was configured with six degrees of freedom. Head-motion 511 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding 512 
rotation and translation parameters) were estimated before any spatiotemporal filtering 513 
using mcflirt51 (FSL 5.0.9). BOLD runs were slice-time corrected to 0.708s (0.5 of slice acquisition 514 
range 0s-1.42s) using 3dTshift from AFNI 2016020749. The BOLD time-series (including slice-515 
timing correction when applied) were resampled onto their original, native space by applying a 516 
single, composite transform to correct for head-motion and susceptibility distortions. The BOLD 517 
time-series were resampled into standard space, generating a preprocessed BOLD run in 518 
MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 519 
generated using a custom methodology of fMRIPrep. Several confounding time-series were 520 
calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 521 
region-wise global signals. FD was computed using two formulations following Power (absolute 522 
sum of relative motions)52 and Jenkinson (relative root mean square displacement between 523 
affines)51. FD and DVARS are calculated for each functional run, both using their implementations 524 
in Nipype. The three global signals are extracted within the CSF, the WM, and the whole-brain 525 
masks. The head-motion estimates calculated in the correction step were also placed within the 526 
corresponding confounds file. The confound time series derived from head motion estimates and 527 
global signals were expanded with the inclusion of temporal derivatives and quadratic terms for 528 
each53. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were 529 
annotated as motion outliers. All resamplings can be performed with a single interpolation step by 530 
composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility 531 
distortion correction when available, and co-registrations to anatomical and output spaces). 532 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 533 
configured with Lanczos interpolation to minimize the smoothing effects of other kernels54. 534 
Preprocessed data were lastly smoothed using a Gaussian kernel with a FWHM of 6.0mm, 535 
masked, and mean-scaled over time. 536 

Functional Imaging Data Analysis 537 

Beta Series Modeling 538 

Least squares separate (LSS) models were generated for each event (presentation of a category 539 
image) in each task following the method described in Turner et al., 201232 using Nistats 0.0.1b2. 540 
For each trial, preprocessed data were subjected to a general linear model in which the trial was 541 
modeled in its own regressor, while all other trials from that condition were modeled in a second 542 
regressor, and other conditions were modeled in their own regressors. Each condition regressor 543 
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was convolved with the glover hemodynamic response function for the model. In addition to 544 
condition regressors, 36 nuisance regressors were included in each model consisting of two 545 
physiological time series (the mean WM and CSF signals), the global signal, six head-motion 546 
parameters, their derivatives, quadratic terms, and squares of derivatives. Spike regression was 547 
additionally performed by including a regressor for each motion outlier identified in each run, as 548 
in Satterthwaite et al., 201353. A high-pass filter of 0.0078125 Hz, implemented using a cosine 549 
drift model, was also included in each model and AR(1) prewhitening was applied to each model 550 
to account for temporal autocorrelation. After fitting each model, the parameter estimate (i.e., 551 
beta) map associated with the target trial’s regressor was retained and used for further analysis. 552 
Modeling was performed using NiBetaSeries 0.6.055 which is based on Nipype 1.4.2.45 Beta maps 553 
for image presentation events, separated by category, for the stimulus learning and reward 554 
learning phases and for decisions between images, again separated by category, were used in 555 
subsequent analyses. 556 

Multivariate Pattern Decoding Analysis 557 

Beta maps from each trial were next used for multivariate pattern analysis. First, a searchlight 558 
classification analysis was conducted for each participant. In brief, a three-way one versus all 559 
logistic regression classifier was trained to distinguish categories using leave-one-run-out cross 560 
validation from runs of the stimulus learning task. We used winner-take-all labeling to determine 561 
the classified label from each trial: the category resulting in the highest probability from the one 562 
versus all classification procedure on a given trial was selected as the predicted label for that trial. 563 
Input data were selected using a spherical searchlight (radius = 2 voxels) moved around the whole 564 
brain. Although the experimental design leads the class labels for each category to be imbalanced 565 
during the stimulus learning phase (i.e. one label always has twice as many occurrences as the 566 
other two), we dealt with this label imbalance in two ways. First, the class weights applied to each 567 
category by the classifier were determined using the ‘balanced’ keyword in sklearn56 such that the 568 
weights were the number of samples divided by the number of labels (3) multiplied by the total 569 
number of occurrences of each label. Second, our metric of performance was the weighted-F1 570 
score, which is the harmonic mean of precision and recall. Each of these methods are commonly 571 
used in the machine learning literature to deal with class imbalance in training data. For each 572 
searchlight sphere, we additionally computed chance performance via a permutation test: labels 573 
were shuffled 1000 times and the weighted F1-score resulting from each of these permutations 574 
was computed. Chance classification performance was then calculated as the 95th percentile of 575 
the F1-score permutation distribution. For each voxel, we then subtracted chance level 576 
performance from the classification accuracy to produce a map of corrected classification 577 
performance for each participant. Finally, an FDR-corrected (q<0.05) group-level map over all 578 
individual subject difference maps was created. 579 

Following classifier training on the stimulus learning phase, we then tested the classifier on runs 580 
from both the reward learning and decision phases. Functional data from each participant on each 581 
of these phases of the experiment was first masked using the group-level searchlight map 582 
produced from the previously described procedure. The three-way logistic regression classifier 583 
was then re-trained on both runs of the stimulus learning phase, using only these voxels, and then 584 
tested separately on the reward learning and decision phases. L1-regularization was used to 585 
reduce overfitting in this procedure. We again used the weighted F1-score as our accuracy metric, 586 
and the 95th percentile of the permutation distribution as our measure of chance classifier 587 
performance. 588 
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Finally, to address our primary question, we created an index of memory reactivation from the 589 
classifier. Specifically, for each trial, we extracted the probability that the classifier assigned to 590 
each category label. A trial was then considered a trial on which memory reactivation occurred if 591 
the following criteria were met: i) the true category label was assigned the highest probability by 592 
the classifier and ii) the associated category was assigned the second highest probability by the 593 
classifier. If these criteria were met, the trial was assigned a one and, if not, a zero. Our logic for 594 
using this criteria was conservative: we reasoned that the classifier should always assign the 595 
highest probability to the category represented by the image that is presently shown on the 596 
screen. Because, by definition, both off-screen categories were candidates for association when 597 
presented as part of Fan In trials during the reward learning phase, we were unable to calculate 598 
a reactivation score for these trials. We were further limited in our ability to compare reactivation 599 
across phases because the classifier was more accurate at identifying category images presented 600 
during the decision phase than during the reward learning phase. We were, however, able to 601 
investigate individual differences in reactivation for Fan Out trials between phases by accounting 602 
for this difference in classification performance by z-scoring reactivation scores within each 603 
phase, as this removes group-level differences while leaving individual differences intact. 604 

Regression Analyses 605 

Unless otherwise noted, parameters for all regression models described here were estimated 606 
using hierarchical Bayesian inference such that group-level priors were used to regularize subject-607 
level estimates. The joint posterior was approximated using No-U-Turn Sampling57 as 608 
implemented in stan. Four chains with 2000 samples (1000 discarded as burn-in) were run for a 609 
total of 4000 posterior samples per model. Chain convergence was determined by ensuring that 610 
the Gelman-Rubin statistic 𝑅8 was close to 1. Default weakly-informative priors implemented in the 611 
rstanarm58 package were used for each regression model. For all models, fixed effects are 612 
reported in the text as the mean of each parameter’s marginal posterior distribution alongside 613 
95% or 90% credible intervals, which indicate where that percentage of the posterior density falls. 614 
Parameter values outside of this range are unlikely given the model, data, and priors. Thus, if the 615 
range of likely values does not include zero, we conclude that a meaningful effect was observed. 616 

We first assessed choice performance on the decision phase of the task. For each subject 𝑠 and 617 
trial 𝑡, a mixed effects logistic regression was used to predict if the correct image was chosen: 618 

𝑝(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑡) = 	𝜎(𝛽! + 𝑏!,/['] + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛'(𝛽2 + 𝑏2,/[']))	 619 

𝜎(𝑥) =
1

1 + 𝑒34
	620 

where 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 was equal to 1 if the participant chose either the image directly associated with 621 
reward (in the case of test trials) or the image indirectly associated with reward (in the case of 622 
transfer trials), and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 was a categorical variable coded as 0.5 for Fan In trials and -0.5 623 
for Fan Out trials. This model was fit separately for test and transfer choices. 624 

We also assessed the relationship between response time and accuracy during transfer choices 625 
using the following mixed effects logistic regression, which included an additional main effect of 626 
response time as well the interaction between response time and condition: 627 

𝑝(𝐶𝑜𝑟𝑟𝑒𝑐𝑡') = 	𝜎(𝛽! + 𝑏!,/['] + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛' ∗ (𝛽2 + 𝑏2,/[']) 	+ 𝑅𝑇' ∗ (𝛽5 + 𝑏5,/[']) 		628 
+	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛'	𝑋	𝑅𝑇' ∗ (𝛽6 + 𝑏6,/['])	)	 629 
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where 𝑅𝑇 was the response time on each transfer choice trial. 630 

We determined the ability of the trained MVPA classifier to distinguish each category label from 631 
chance using the following mixed effects linear regression:  632 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐶ℎ𝑎𝑛𝑐𝑒 = 	𝛽! + 𝑏!,/['] + 𝑃ℎ𝑎𝑠𝑒'(𝛽2 + 𝑏2,/['])	 633 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 − 	𝐶ℎ𝑎𝑛𝑐𝑒 was the 95th percentile of the permutation distribution subtracted from 634 
classification accuracy, and 𝑃ℎ𝑎𝑠𝑒 was a categorical variable coded as 0.5 for the decision phase 635 
and -0.5 for the reward learning phase. This model was fit separately for each category (face, 636 
scene and object). 637 

Another set of models was fit to assess the relationship between memory reactivation and transfer 638 
choice behavior. Analyses were conducted on the average reactivation level of each stimulus. In 639 
order to assess effects of reactivation on transfer accuracy for each stimulus, 𝑖, accuracy was first 640 
transformed59 to ensure that all responses fell within the interval (0,1): 641 

𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐′& =
𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐&(𝑁 − 1) + 0.5

𝑁
 642 

where 𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐 was participants’ average transfer accuracy for each consequent stimulus and 643 
N was the sample size (39). We first examined the effect of (z-scored) differences in reactivation 644 
between the reward learning and decision phases for each associated antecedent-consequent 645 
pair of Fan Out stimuli on transfer accuracy. To do so, we fit a mixed effects beta regression: 646 

𝑙𝑜𝑔𝑖𝑡(𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐′𝑖) = 	𝛽! + 𝑏!,/[&] + ∆𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛'(𝛽2 + 𝑏2,/[&]))	 647 

where ∆𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is the difference in memory reactivation between reward learning and the 648 
decision phase for each pair. Similar beta regressions were used to assess effects of memory 649 
reactivation during the decision phase for Fan In and Fan Out consequent stimuli, separately. To 650 
assess effects on choice transfer response time, linear mixed effects regressions with the same 651 
predictors were used instead. 652 

We additionally assessed how memory reactivation differed for each condition (Fan In or Fan Out) 653 
during the decision phase. We performed this analysis using the following mixed effects linear 654 
regression:  655 

𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 	𝛽! + 𝑏!,/ + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝛽2 + 𝑏2,/)	 656 

where 𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 was memory reactivation during the decision phase for each participant and 657 
condition and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 was coded identically to the models described above. 658 

Lastly, we examined individual differences in strategy usage by comparing our reactivation 659 
measures across phases of the task. Specifically, we fit a simple linear regression predicting each 660 
participants’ average level of memory reactivation for Fan Out during reward learning from their 661 
difference in memory reactivation during the decision phase. 662 
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 795 
Supplementary Figure 1. As shown in Figure 4C, greater memory reactivation at decision time is 796 
associated with less effective transfer decisions for Fan In but not Fan Out image pairs. Shown here is this 797 
effect, the difference in slopes, for every participant and at the group-level. Participants demonstrate this 798 
relationship more for Fan Out than Fan In decisions (𝛽) =	−0.215	, 	95%	𝐶𝐼 = [−0.312,	−0.118]), as 799 
indicated by comparing their random slopes. The filled point represents the group-average difference in 800 
slopes, whereas empty points represent individual slope differences.  801 
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