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Proactive and reactive construction of
memory-based preferences

Jonathan Nicholas 1,2,3, Nathaniel D. Daw 4,5 & Daphna Shohamy1,2,6

We are often faced with decisions we have never encountered before,
requiring us to infer possible outcomes before making a choice. Computa-
tional theories suggest that one way to make these types of decisions is by
accessing and linking related experiences stored in memory. Past work has
shown that such memory-based preference construction can occur at a
number of different timepoints relative to the moment a decision is made.
Some studies have found thatmemories are integrated at the time adecision is
faced (reactively) while others found thatmemory integration happens earlier,
when memories were initially encoded (proactively). Here we offer a resolu-
tion to this inconsistency, demonstrating that these two strategies tradeoff
rationally as a function of the associative structure ofmemory. We use fMRI to
decode patterns of brain responses unique to categories of images inmemory
and find that proactive memory access is more common and allows more
efficient inference. However, we also find that participants use reactive access
when choice options are linked to a larger number of memory associations.
Together, these results indicate that the brain judiciously conducts proactive
inference by accessing memories ahead of time when conditions make this
strategy more favorable.

Some decisions aremade repeatedly, offering the opportunity to learn
directly about an option’s value through past experiences with its
outcome. However, decisions often consist of a choice between
options whose outcomes have not been directly experienced before.
Computational theories of planning suggest that one way to approach
such decisions is by knitting together separate relevant memories
through mental simulation1–3. The ability to flexibly combine infor-
mation in this way is central to intelligence: it frees us from having to
decide based on direct trial-and-error experience alone and enables us
tomake inferences and to plan novel courses of action using cognitive
maps or internal models4–8.

The process of drawing inferences requires accessing relevant
memories and recombining or integrating across them to build new
relationships. Studying memory access is therefore one way to shed
light on the covert mechanisms that give rise to inferential choice. Yet

previous work attempting to probe this connection has left open a
critical gap in our understanding of howandwhenmemory integration
supports inference. In particular, some studies have claimed that
memories are accessed at the time a choice is faced2,9,10, while other
studies have found that memory access occurs much earlier, when
relevant memories are first encoded11,12. These two approaches differ
not just in the timepoint of memory access, but also reflect distinct
mechanisms. Integrating memories during a decision requires “on the
fly” processing, which is likely to take time, whereas integrating
memories earlier suggests that the new model for inference already
exists when a choice is later made, yielding more efficient
decisions11,13,14. It has been suggested, but not yet empirically tested,
that there may be some normative explanation for the variation
between these two approaches15. In the present study, we aimed to
address this gap by studying both possibilities in a single experimental
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design. We sought to first confirm the normative advantages that early
memory access confers and then to investigate how changing the
structure of memory access can rationally shift this process to happen
later, at decision time.

The role of memory integration in inference is often studied with
multi-phase tasks that first seed relevant associative memories and
then test whether people integrate them when probed to make deci-
sions. A classic task in this vein, which we build upon here, is sensory
preconditioning16. In sensory preconditioning, participants are first
trained to associate two stimuli that occur in succession (A→B). Then,
in a separate phase, the B stimulus is associated with reward. The
critical question is whether people infer that the A stimulus is also
associated with reward. This is tested in the final decision phase, when
participants are asked to choose between A and another control sti-
mulus (which is equally familiar but lacks the indirect reward asso-
ciation). Humans and non-human animals alike tend to prefer A
despite never directly experiencing its association with reward11,12,14,16.
Studies of sensorypreconditioning and similar tasks have revealed two
potential mechanisms, each predicting memory integration either
before or during choice, that may lead to this same behavioral effect.

A typical explanation for inference in tasks like sensory pre-
conditioning, assumed in theories of decisionmaking that date back to
Tolman8, envisions that choosing A reflects prospective mental simu-
lation at decision time: in this case, retrieving the B-reward association
when evaluating whether to choose A. This, in turn, is thought to be a
minimal case of a more general capacity for forward planning. This
forward planning has been embodied by theories of model-based
reinforcement learning in which actions are evaluated over multiple
steps using a learned internal model, either in the form of one-step
associations between states encountered serially or as a successor
representation that generalizes this to associations over multiple
timesteps17–19. By examining neural signatures of memory retrieval, it
has been possible to investigate howmemory access actually relates to
successful model-based inference. Yet, studies have yielded mixed
support for this account. Some evidence suggests that both humans
and non-human animals engage in prospective retrieval at decision
time, and that this pattern is associated with inferential
performance4,9,10,20–22. However, there is also evidence that associative
recall may occur long before a decision is ever faced11,12,23–26.

These latter findings imply a second explanation for inference in
these tasks: that the value of options may be pre-computed when rele-
vant information like reward is first encoded, thereby preempting the
need for evaluating potential outcomes later at choice time. In some
studies of sensory preconditioning, for instance, it has been found that
when B is presented during reward learning, A is concurrently retrieved
and directly associated with reward11,12. Such a strategy is feasible
because, at this time, participants have already been provided with all of
the components necessary to form a complete model of the task. Per-
haps analogously, in rodent spatial navigation tasks, hippocampal place
cells often briefly represent trajectories in front of the animal20–22, a
potential substrate for prospective evaluation. However, otherwise
similar “replay” events can instead reflect backward or altogether non-
local trajectories at the time of reward27–30, potentially supporting a
spatial analogue of the alternative inference strategy.

An emerging idea is that these different inference mechanisms
may be special cases of a more general set of computations that share
the common goal of integrating memories to infer action values, but
that access memories at different times: either proactively before they
areneededor reactively, once required for choice15,31. This in turn raises
questions about how these strategies are balanced or adaptively
deployed, and whether such control might explain variable results
across studies. Indeed, the possibility of proactive computation
implies that the brain must somehow be judicious about which
memories it accesses, and when, since there are somany possible later
actions that might be contemplated.

This idea, while compelling, is still largely untested, and raises a
number of questions about how and when different strategies are
deployed, which we aimed to address in this study. First, is it indeed
the case that a proactive memory access strategy can support infer-
ential choice equivalent to a reactive one? Second, what are the tra-
deoffs of the two approaches: if access occurs proactively, does it
reduce the need for computation at decision time? Finally, do people
rely differentially on this strategy at times when it would be sensible
to do so?

We aimed to answer these questions by attempting to alter par-
ticipants’ reliance on proactive inference. We had three primary
hypotheses. First, we expected to confirm earlier (but inconsistently
reported) results that sensory preconditioning can be solved with
proactive memory access at the time of reward learning. Second,
because proactive inference offers the advantage of a pre-computed
value association, we hypothesized that this approach may allow for
more efficient future decisions–i.e. decisions that are faster and more
accurate. Third, we hypothesized that reliance on this strategy would
adapt under different circumstances, which we operationalized by
manipulating how difficult it is to access and integrate relevant
memories. Drawing upon a rich tradition of research on associative
memory32, we reasoned that havingmultiple relevant associationswith
an experience should, at any timepoint, induce competition between
them, making their retrieval for use in inference less likely.

To test these hypotheses, we developed a novel learning and
decision making task based on sensory preconditioning, and mea-
sured memory retrieval at multiple timepoints of this task while
scanning participants with fMRI. Participants completed this task in
three phases (Fig. 1). In phase one, stimulus learning, participants
learned associations between several antecedent-consequent (A→B)
pairs of images. In phase two, reward learning, participants learned
that a subset of consequent (B) images led to a reward,while othersdid
not. Finally, in phase three, the decision phase, participants made a
series of test and transfer choices between two of these images.On test
choices, participants chose between consequent images that were
directly associated with either a reward or neutral outcome during the
reward learning phase. Transfer decisions consisted of choosing
between antecedent (A) images that were paired with consequent
imagesduring the initial stimulus learningphase. Successful transfer of
value to these images involves relying on memory for the paired
association and can be accomplished, in principle, by either proactive
or reactive memory access. This task is well suited to address our
questions, which focus on when associations between memories are
accessed to support inference. However, it is agnostic as to questions
about how these associations are represented as internalmodels in the
brain (i.e. whether they are stored as one-step relationships or as a
successor representation17–19).

To capture putative reactivation of associations in memory in the
service of inference, we exploited the fact that viewing different visual
categories (e.g. faces, scenes, and objects) elicits unique activity in
visual cortex10,11,33,34. We used images from these different categories
for each of the different stimuli, which allowed us to measure whether
reactivation of associated images in memory occurred during either
reward learning, signifying proactive inference, or during decision
making, signifying reactive inference. We predicted that proactive
memory access during reward learning should result in more efficient
later choices, and that reactive memory access during choice itself
should have the opposite effect.

To address our third hypothesis specifically, we further varied the
number of competing associations with a given stimulus by training
participants on antecedent-consequent relationships under two dif-
ferent conditions (Fig. 1). In one condition, two antecedent stimuli
eachpredicted a single consequent stimulus;we refer to this as the Fan
In condition. By contrast, in the Fan Out condition, a single antecedent
predicted two possible consequents. The logic of this manipulation is
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that the Fan In condition induces greater retrieval competition
between memories of antecedent stimuli when the consequent sti-
mulus is presented during the reward learning phase. We therefore
predicted that there shouldbe increased relianceon reactive inference
for stimuli in the Fan In condition relative to FanOut condition. To test
this prediction, we measured reactivation in BOLD activity for ante-
cedent stimuli in the Fan Out condition during the reward learning
phase, and for consequent stimuli in both conditions during the
decision phase.

Results
Behavioral evidence for proactive inference and its modulation
by retrieval competition
We first examined whether participants learned to directly
associate consequent stimuli with reward, and whether they
transferred value to associated antecedent images. To assess this,
we analyzed participants’ test and transfer choices during the
decision phase. On test choices, participants were highly accurate
and tended to choose the rewarded consequent image over the
neutral consequent image (β0 = 5:009, 95%CI = 4:085, 6:279½ �;
Fig. 2A). There was no difference between the Fan In and Fan Out
conditions (βcondition =0:321, 95%CI = �1:251, 2:128½ �), indicating that
participants learned similarly in both.

Next, we examined participants’ transfer choices during the
decision phase (Fig. 2B). We found that participants tended to choose
the antecedent image that was paired with the rewarded consequent
image (β0 = 2:075, 95%CI = 1:283, 2:896½ �), indicating that most

participants usedmemory to transfer value. Therewas no difference in
transfer performance between Fan In and Fan Out choices
(βcondition =0:572, 95%CI = �0:157, 1:284½ �), demonstrating that the
manipulation of associative structure between conditions had no
effect on the degree to which value was transferred.

Having established that participants infer the value of associated
antecedent images in both conditions, we next sought to gain initial
insights into when memories are accessed to support this value
transfer.We aimed to differentiate between two possible strategies for
inference, each occurring at different timepoints in our task: either
proactively at reward learning or reactively at decision time. One
hypothetical hallmark of proactive inference is that it should promote
accuracy without the need for further memory retrieval of con-
sequents at choice time, resulting in faster transfer decisions. Thus, if
its deployment varies across stimuli, it predicts an unusual inverted
speed-accuracy relationship whereby faster decisions tend also to be
more accurate. In contrast, successful reactive inference by definition
requires retrieving associations between memories at choice time,
resulting in slower transfer decisions and (to the extent its deployment
governs successful performance) a more typical relationship between
slower decisions and higher accuracy.

Overall, we found that choices reflecting memory-based transfer
were faster (βrt = � 0:611, 95%CI = �0:945, � 0:287½ �; Fig. 2C), sug-
gesting that participants may have inferred proactively. In addition,
this relationship was stronger in the Fan Out than the Fan In condition
(βcondition:rt = � 0:465, 95%CI = �0:937, � 0:017½ �), consistent with
our expectation that the Fan In condition is less amenable to proactive

Fig. 1 | Task design and inference strategies. A Task structure. Participants
(n = 39) underwent fMRI scanning while completing a three-part experiment with
two different conditions, based on sensory preconditioning. The phases were
similar for both conditions, which differed only in their specific associative struc-
ture. In phase one, stimulus learning, participants learned associations between
several pairs of images (faces, scenes, or objects). Unknown to participants, there
were two types of trials governing how these associations appeared. Fan In trials
consisted of one of two possible antecedent A images followed by one consequent
B image. FanOut trials consisted of one antecedent A image followedby one of two
possible consequent B images. Example categories for each image are shown here,
and this was counterbalanced across participants. In phase two, reward learning,
participants learned that a subset of consequent B images led to a reward, while

others did not lead to reward. Finally, in phase three, the decision phase, partici-
pants chosebetween two images. Choices betweenconsequent B imageswere used
as test trials, whereas choices between antecedent A images were used as transfer
trials. B Example events. An example of the sequence of task events seen by
participants in each phase. C Possible inference strategies. Participants can
engage in either of two inference strategies: proactive inference, at the time of
reward learning, or reactive inference, at the time of the decision. During decision
making, proactive inference does not require the integration of a memory with
value, as this association has already been performed during reward learning. Due
to differences in the number of competing antecedent memories at reward learn-
ing, we expected reactive inference to be used more for Fan In stimuli.
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inference. Together, these behavioral findings suggest that while
proactive inference may be common in performance overall, reactive
inferencemay have been more commonly observed in the Fan In than
the Fan Out condition.

Neural evidence for proactive and reactive inference and their
modulation by retrieval competition
While examining participants’ choices allowed us to assess the different
behavioral signatures of proactive and reactive inference, choice beha-
vior alone cannot capture when exactly memories were accessed
throughout the task. To gain further insight into when memories were
recalled to support inference, we used fMRI to obtain a neural signature
ofmemory reactivation at different timepoints in our task (Fig. 3A). As in
past work11,12, here we primarily interpret memory reactivation as a
marker of inference, but note that another plausible role for memory
reactivation may be to strengthen associations between individual
memories1,2. Tomeasurememory reactivation, wefirst used runs of fMRI
data collected from the stimulus learning phase to train a classifier to
distinguish between each image category: faces, scenes or objects. We
then tested this classifier on activity from the reward learning and
decision making phases, and assessed its ability to identify the category
of the image that was presented to participants. As expected, voxels
that differentiated accurately between categories were located
primarily across the bilateral occipito-temporal cortex (Fig. 3B). When-
tested on the reward learning and decision making phases, the
classifier accurately differentiated each category from the others
(Faces: β0 =0:161, 95%CI = 0:134, 0:189½ �; Scenes: β0 =0:151, 95%CI =
0:123, 0:180½ �; Objects: β0 =0:066, 95%CI = 0:041, 0:093½ �; Fig. 3C).

With a classifier in hand that could distinguish between each
category based on BOLD activity patterns seen during the reward
learning and decision phases, we were poised to assess the degree to
whichmemorieswere reactivated for inference, andwhen. Specifically,
tomeasurememory reactivation, we examined the individual category
probabilities from the classifier on every trial, and identified those in
which the probability of the associated image category (as opposed to
the presented category) was particularly high (see “Methods”). This
analysis allowed us to label every trial as one in which reactivation of

the relevant associated category in memory was either likely or
unlikely.

To determine whether memories were accessed in accordance
with the patterns of inference we observed behaviorally, we focused
on threemain goals for the analyses. First, becauseparticipants’ choice
behavior at transfer suggested a tradeoff between speed and accuracy
most consistent with proactive inference, we sought to examine
whether greater memory reactivation during the reward learning
phase indeed results in more efficient (faster and more accurate)
choices. Second, because we found that this effect was weaker during
Fan In compared to FanOut transfer choices (when therewas relatively
more retrieval competition betweenmemories during reward learning
and less during decisionmaking),we sought to determinewhether this
behavioral shift was supported by different memory access patterns
across conditions. Third, we predicted that it would be most strategic
for participants to proactively infer prior to choice time for Fan Out
trials, but to reactively infer at choice time for Fan In trials and there-
fore tested this by characterizing individual differences in memory
access between participants.

To first examine whether memory access during reward learning
leads to more efficient choices, we quantified the difference in
memory reactivation during image viewing at reward learning and
decision time. This yielded an index of proactive inference for each
pair of images. We focused on the Fan Out condition because the
design allowed us to measure reactivation for this condition at both
of these time points (for the Fan In condition, the design only allows
measuring reactivation at decision time; see “Methods”). When there
was more evidence of proactive inference – i.e. when memory reac-
tivation was greater at the time of reward learning relative to that
of decision making - transfer choices were both more
accurate (βΔreactivation =0:302, 95%CI = 0:0384, 0:593½ �) andmarginally
faster (βΔreactivation = � 37:902, 90%CI = �75:273, � 2:508½ �, 95%CI =
½�82:823, 3:180�; Fig. 4). This result suggests that using memory to
transfer value via proactive inference offers the advantage of more
efficient choices in the future.

We next examined whether the Fan In and Fan Out conditions
affected memory access patterns, focusing on the time of choice

Fig. 2 | Participants successfully learned and transferred across both condi-
tions, but the relationship between speed and accuracy differed across con-
ditions. A Test decisions (i.e. those between images that were directly associated
with reward or neutral outcomes during reward learning) were highly accurate,
reflecting successful learning for both conditions. B Transfer decisions (i.e. those
between images that were indirectly associated with reward or neutral outcomes
via the stimulus learning phase) were also highly accurate, indicating successful
inference for both conditions. Filled points represent group-level means whereas
white points represent means for each pair of images seen by n = 39 participants.

Error bars are 95% confidence intervals. C The relationship between the proportion
of accurate transfer choices and reaction time for each image pair revealed that
faster decisions weremore accurate and that this relationship was stronger for the
Fan Out condition, in which the structure was more amenable to proactive inte-
gration. Lines represent regression fits and bands represent 95% confidence
intervals. Individual points represent means for each image pair. All visualizations
show data at the stimuli level, and statistical analyses were conducted using mixed
effectsmodels that additionally assessed these effects within eachparticipantwhile
accounting for variation across participants.
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because this was the timepoint at which we were best able to assess
reactivation in both conditions (see “Methods”). In line with partici-
pants’ behavior, we found that during the decision phase,memories of
rewarded consequent images were reactivated more frequently for

Fan In than Fan Out transfer decisions (βcondition = :119, 95%
CI = 0:051, 0:184½ �; Fig. 5A). This result indicates that our manipulation
induced increased retrieval competition during FanOut relative to Fan
In transfer decisions. It further provides initial evidence that reactive

Fig. 3 | Multivariate pattern analysis methodology and decoding accuracy.
A MVPA analyses consisted of four primary steps. Step 1: Least Squares Separate67

was used to isolate a betamap for each trial and participant across all phases of the
experiment. These betas were then used as input for the MVPA pipeline. Step 2: A
searchlight analysis consisting of a one versus all three-way logistic regression was
then used to identify voxels that could discriminate between all three categories
during the stimulus learning phase. Step 3: Voxels identified during the previous
step were then used to mask the whole brain during testing of the classifier on the
reward learning and decision phases. Step 4: Evidence of reactivation on each trial

was then assessed by ranking the individual category probabilities accordingly.
B Group-level whole-brain maps (FDR corrected; q < 0.05) of voxels that dis-
criminate between all three categories above chance. C Classification accuracy for
the decoding model trained on the stimulus learning phase and tested on the
reward learning and decision phases. Accuracy is shown here as the weighted
F-score. Points represent accuracy for each participant (n = 39) and the thick line
represents group-level average accuracy. Dotted lines represent the 95th percentile
of a permutation distribution over test category labels.
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inference may be more likely to occur when proactive inference is
disadvantaged, although reduced Fan Out reactivation could also be
consistent with accounts of reactive inference in which memories are
retrieved in parallel (a point to which we return in the Discussion).

To further investigate the possibility that reactive inference is
more likely when proactive inference is relatively less advantageous,
we examined the relationship between decision-time memory reacti-
vation and behavioral performance. The behavioral findings showed
that transfer choices were both slower and less successful in the Fan
Out relative to the Fan In condition (Fig. 2C). This effectmay reflect the
fact that, due to competition, proactive inference is easier and reactive
inference is correspondingly harder, making it less likely to be suc-
cessful in the Fan Out condition. We therefore predicted that the
neural measure of memory reactivation at decision time should like-
wise be associated with less successful value transfer in the Fan
Out condition. Indeed, we found that Fan Out transfer decisions
were less accurate when antecedent memories were reactivated at
decision time (βreactivation =0:300, 95%CI = �0:625, � 0:001½ �; Fig. 5B).
Further, no such effect was found in the Fan In condition
(βreactivation = � 0:086,95%CI = �0:255, 0:075½ �; Supplementary Fig. 1).
This result lends additional support to the interpretation that the
manipulation of associative structure increased participants’ relative
use of reactive inference in the Fan In condition.

Finally, we assessed the idea that it would be strategic to proac-
tively infer prior to choice time for FanOut trials, and to reactively infer
at choice time for Fan In trials. We examined whether individuals who
tend to reactivatememoriesmore for Fan In relative to FanOut trials at
decision timealso reactivatedmemoriesmore for FanOut trials during
the reward learning phase. That is, we asked whether participants’
ability to appropriately deploy one of these strategies also predicted
appropriate deployment of the other. We found that this was indeed
the case—participants who reactivated memories more for Fan In
transfer decisions relative to Fan Out transfer decisions also
reactivated memories for Fan Out stimuli at reward learning
(βΔreactivation =0:027, 95%CI = 0:003, 0:050½ �; Fig. 5C). This result sug-
gests that those participants who were most sensitive to the presence
of retrieval competition at either timepoint strategically modulated
when they accessed their memories to perform inference.

Discussion
Research on sequential decision making has found that the process of
linking memories to support inference is well described by theories of
reinforcement learning that leverage an internal model to guide
choice4–6,9,10,18,19. Numerous studies have shown that memory-based
inference can occur at a number of different timepoints relative to the
moment a decision is made10–12,21,22,25,26,35,36. However, the conditions
that lead some memories to be accessed later than others have
remained unclear. Here we developed a task to directly test multiple
hypotheses about the purpose and adaptability of memory access in
inference. Using fMRI to decode patterns of BOLD response unique to
the categories of images in memory, we found that participants pri-
marily accessed memories proactively, but this pattern was also sen-
sitive to the situation: when a choice option had multiple past
associations, participants were more likely to defer inferring relation-
ships between stimuli and outcomes until decisions were made. This
finding suggests that the presence of competition between associa-
tions in memory makes their retrieval for use in inference less likely,
and runs counter to alternate possibilities in which the opposite may
have been true (e.g., if memory reactivation is primarily driven by the
imperative to associate reward with related stimuli, one may expect
relatively more reactivation for the Fan In condition during reward
learning and for the Fan Out condition during choice). We also found
neural and behavioral evidence that reinstating memories prior to
decision making facilitates faster and more accurate inference, sug-
gesting that it is adaptive to plan in advance when possible. Together,
these results indicate that the brain judiciously conducts proactive
inference, accessing memories proactively in conditions when this is
most favorable.

These findings add empirical support to predictions from a recent
rational account ofwhen eachof these formsof inference ismost useful
for decisionmaking15. Specifically,Mattar andDaw (2018) theorized that
memories that are particularly likely to increase future expected reward
will be prioritized for reinstatement during inference and planning.
Formally, they proposed that the expected utility of accessing a past
experience can be decomposed into the product of two terms: need
and gain. Need quantifies how likely an experience is to be encountered
again, and gain captures howmuch reward is expected from improved

Fig. 4 | Proactive inference improves decision making ability. Greater memory
reactivation at reward time relative to decision time - a marker of proactive
inference - is associated with more effective transfer decisions. A Correct transfer
decisions were more likely for pairs with greater memory reactivation during
reward learning relative to decision making. B Response times were marginally
faster for pairs with greatermemory reactivation during reward learning relative to

decision making. Points represent average performance for each image pair seen
by participants. Lines represent regression fits and bands represent 95% con-
fidence intervals. Visualizations show data at the stimuli level, and statistical ana-
lyses were conducted using mixed effects models that additionally assessed these
effects within each participant while accounting for variation across participants.
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decisions if that experience is reinstated. A critical feature of thismodel
is that when the need term dominates, memories tend to be accessed
reactively at choice time, but if instead the gain term dominates,
memories tend to be accessed proactively following the receipt of
reward. Thepresentfindingsgenerally support this theory. Inparticular,
gain increases for an antecedent when choices fan out, favoring
proactive memory access, while need increases for consequents, pro-
moting reactive choice-time memory access, as they fan in. Thus,
antecedents that are associated with many consequents (i.e. that fan
out) are more likely to be reinstated upon learning that a consequent is
rewarded, because there ismuch togain fromupdating futuredecisions
made upon future encounters with the antecedent. Likewise, ante-
cedentswhich deterministically lead to a single consequent (i.e. that fan
in) imply greater need for that consequent, and are more likely to be
reinstated at decision time. Importantly, while our findings are con-
sistent with this theory, they were also designed to be predicted by
more intuitive, qualitative reasoning about the degree of competition
among different memories, and so go beyond any single theory of
prioritization for memory access.

In addition to findings from sensory preconditioning demon-
strating that humans usememories for inference11,12, a number of other
studies have shown that memory-based inference may also take place
offline, during periods of rest or sleep before choice. This approach is
advantageous because it offloads computation to otherwise unoccu-
pied time. In humans, fMRI research has revealed that memories are
reactivated during periods of rest following reward23,24 and that this
reinstatement can enhance subsequent memory performance37,38.
Importantly, such offline replay of past memories during rest has been
shown to facilitate later integrative decisions25,26. Parallel work in
rodents has demonstrated that hippocampal replay of previously
experienced spatial trajectories is observed during rest and sleep39,40,41,
and that rewarded locations are replayed more frequently28. These
results indicate another way in which inferences may be drawn offline,
well before constituentmemories are needed for choice. An important
direction for future work will be to see if rational considerations, such
as sensitivity to competition between memories, also affect the like-
lihood, or targets of, offline inference.

A separate important open question regards the details of how
associations between memories are represented in the brain. In other
words, what is the nature of the internal model? Computational work

on reinforcement learning has identified multiple candidate algo-
rithms that may give rise to the effects reported here. Broadly, these
theories posit that agents come to represent associations between
states in an internal model, and then, using this model, simulate
experiences to discover the consequences of new actions. The process
of simulating potential actions can occur in either a forward or back-
wards manner, and can be based upon internal models with different
representational forms. For example, in RL algorithms that employ a
full world model, forward simulation is accomplished by adding up
expected immediate rewards over some explicit future trajectory
(rolled out over a series of one-step associations), while backwards
simulation can occur by propagating value information from a desti-
nation state to a series of predecessors42–45. Other algorithms, such as
successor17 and predecessor representations, learn temporally
abstract state relationships that are aggregated over multiple time-
steps, and can be similarly used to compute which states typically
followorprecede the present, respectively. Ourfindings are consistent
with either of these frameworks.

Moreover, our experimental design is not well positioned to dif-
ferentiate between them. Using tasks in which future outcomes are
separated from the present by multiple steps in space or time, much
work has found that people may encode both one-step transitions
between states and aggregate summaries of these relationships over
multiple timesteps in the form of a successor representation18,19,46,47.
While in such multi-step tasks these approaches often lead to sub-
stantially different internal models (and specifically, more efficient
noniterative inference for successor representations), on tasks that
involve only a one-step relationship between an antecedent and a
consequent (such as the task we used here), their internal models are
roughly equivalent. For this reason, the results of the current study
have no bearing on this distinction. With that said, it is possible that
these approaches may differ in their computational costs even in one-
step tasks: implementations of the successor representation often
assume that all successors are visited in parallel (as by a dot product)
whereas those using a full transitionmodel often employ serial rollouts
or tree search. Regardless of the form of model participants relied
upon to complete the task and the particular steps involved in using it
for evaluation, our results are consistent with the idea that proactive
inference yields benefits by eliminating the need to retrieve associa-
tions between memories at choice time.

Fig. 5 | Reactive inference is more likely in the Fan In than Fan Out condition.
A Reactivation during the decision phase was greater for Fan In than FanOut trials.
Filled points represent group-level means, error bars are 95% confidence intervals,
and thin lines represent individual participant slopes (n = 39). B Greater memory
reactivation at decision time, a marker of reactive inference, is associatedwith less
effective transfer decisions for FanOut but not Fan In image pairs. Points represent

average performance for each image pair seen by participants. Lines represent
regression fits and bands represent 95% confidence intervals. C Participants who
showed greater reactivation for Fan In relative to Fan Out trials during decision
making also preferentially reactivated more for Fan Out trials during reward
learning. Points represent individual participantmeans, the line represents a linear
regression fit, and the band represents a 95% confidence interval.
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Relatedly, in our study we are unable to isolate how people may
retrieve memories from their internal models. While it is the case that
algorithms employing a successor representation typically retrieve
states in parallel and those incorporating a full transition model typi-
cally do so serially, several formulations exist in which the opposite is
true48–51. Both of these forms of retrieval may have been used to sup-
port transfer choices in our task, and we are unable to clearly differ-
entiate between them in the present work. Although our results are
broadly consistent with serial retrieval, reduced reactivation of the
rewarded consequent image relative to the other associated con-
sequent image during Fan Out transfer choices (Fig. 5A) is also con-
sistent with inference algorithms that retrieve in parallel. This is
because parallel retrieval would predict equal reactivation of both
consequent stimuli. We note, however, that our other findings are
unlikely to be explained by such an account. Determining both the
form of representation people use for proactive and reactive inference
and how memories are accessed to support inference more broadly
remain questions for future research. This is particularly important
because the advantages offered by computing value proactively may
be offset by using a successor representation for reactive inference in
environments with a particularly large temporal horizon or where the
reward values of states may change.

In connection with these points, recent behavioral work in
humans has also shown that efficient one-step predictive representa-
tions are used for both forwards prediction at decision time and also
backwards prediction in a manner similar to the proactive inference
strategy we measured here45. In particular, this study demonstrated
that such a strategy is relied upon more often in environments where
the number of states that follow a starting state outnumber those that
precede a rewarded state. Using a similar manipulation coupled with
direct assays of strategy use, our results provide convergent evidence
for this idea. Our study further enhances understanding of proactive
and reactive approaches to inference by grounding each of these
strategies in the mechanisms of memory.

A separate avenue for future study that we did not touch upon here
involves the role of dopamine in supporting the integration ofmemories
with reward to guide behavior. Although the dopaminergic system has
traditionally been thought to support habitual learning from direct
experience, recent results suggest that dopamine may also support
integrative evaluations of actions through the flexible combination of
past experience52,53. Our task may provide an opportunity to further
elucidate the role of dopamine in this process. Despite being solved in
different ways, both of the conditions in our task are dependent upon
the flexible expression of knowledge about stimulus associations.
Therefore, if dopamine is necessary for the acquisition of model-based
associations, as has been recently suggested53, we expect it to be
involved in both conditions equally. This prediction could, for example,
be tested by examining how integrative choice behavior in the present
task is affected by dopamine depletion in Parkinson’s disease.

Other open questions remain about the precise role of memory
reactivation in designs such as ours. Following prior research11,12, we
used stimuli from specific visual categories to measure category-
specific BOLD activity as a proxy for memory reactivation. Here, as in
this past work, we interpreted memory reactivation in our design as a
sign of memory-based inference, or retrieval to transfer reward infor-
mation across associated states. But another role of reactivation may
be to strengthen previously learned associations between individual
memories (e.g., to build or update a successor representation as in the
Dyna-SR algorithm rather than transferring reward associations as
heretofore assumed46,54). It is possible that this mechanism may con-
tribute to the effects reported here; for example, reactivating mem-
ories prior to choice (during our rewardphase)may prevent forgetting
(e.g., by strengthening or updating the associative model), leading to
improved inferences in the future (e.g., bymanifesting here as changes

in reaction times or neural measures of retrieval during the transfer
phase). Our study cannot fully rule out this possibility, particularly in
how it may contribute to the improved benefits of proactive inference
at decision time that we measured for Fan Out stimuli (Fig. 4). How-
ever, past work on the sensory preconditioning task suggests that
reactivation during the reward learning phase likely measures proac-
tive inference, at least in part. Specifically, Kurth-Nelson et al.12 found
that successful transfer decisions were associated with greater mem-
ory reactivation at outcome time (i.e., during the presentation of
reward information). This finding appears to be best explained by
proactive inference about reward, which predicts that credit should be
assigned to the antecedent at thismoment. Outside of this evidence, it
is also important to note that the alternative still corresponds with our
general framework: associations between memories can be strength-
ened ahead of time, providing future benefits, or during choices
themselves, leading to similar tradeoffs in speed and accuracy. In fact,
there are several theoretical accounts in which replay has this
effect46,54. Disentangling these possibilities remains a critical goal for
future work. One approach for future studies may be, for example, to
include more explicit measures of memory for each stimulus
association.

Separately, one shortcoming of our study was that, due to our
design, we were unable to isolate memory reactivation when con-
sequent images from the Fan In condition were presented during
reward learning. In practice, this limited our contrasts between con-
ditions to decision time and our contrasts between timepoints to the
Fan Out condition. This was because our metric of memory reactiva-
tion was conservative in the sense of being selective to the specific
relevant candidate for classification. In particular, in addition to the
category actually present on the screen being most strongly decoded,
we required that the relevant associate be more strongly activated
than the irrelevant foil to declare reactivation successful. However, at
reward time in the Fan In condition, both categories are relevant
associates, so this comparisonwas not possible. Onepossibility to skirt
this issue in future work may be to present images of a fourth entirely
unrelated category. We did not pursue this direction in the present
study to minimize the complexity of the design. Future com-
plementary work may explore these issues in more depth in order to
allow for cleaner measurement of reactivation when antecedent ima-
ges fan in during reward learning.

In conclusion, we have demonstrated that the statistical structure
of training experience impacts whether inference from memory
occurs before or during decision making. This finding suggests that
standard prospective inference is not unique, but is instead one of a
general set of computations that access memory at different times.
Together, these findings further help to explain why different studies
have observed memory integration to support choice at different
times, and suggest that different inference strategies may be recruited
depending on their efficacy for the task at hand.

Methods
Participants
A total of 40 participants (19M, 21 F) between the ages of 18–35 were
recruited from the Columbia University community. Participants were
right-handed, had normal or corrected-to-normal vision, took no
psychiatric medication, and had no diagnosis of psychological dis-
orders. One participant was removed from the analyses due to both
failing to understand the instructions of the task and missing respon-
ses on over half of the decision trials. The remaining 39 participants
had a mean age of 21.9 with a range of 19–35 and were included in the
reported sample. No statistical method was used to predetermine
sample size. Informed consent was obtained at the beginning of the
session and all experimental procedures were approved by the
Columbia University Institutional Review Board.
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Experimental task
Participants completed a three-part associative learning task while
undergoing an fMRI scan. In the first phase of the experiment, stimulus
learning, participants were tasked with learning pairs of images pre-
sented one at a time. Each trial consisted of a single image (A; 1.5 s),
followed by a interstimulus interval in which a fixation cross was dis-
played (exponentially jittered with mean= 3 s, min=0.5 s, max= 12 s),
followed by another image (B; 1.5 s), and finally an intertrial interval in
which another fixation crosswas displayed (exponentially jitteredwith
mean= 3 s, min= 0.5 s, max=12 s). In order to ensure that participants
were paying attention, theywere asked to press a button boxwith their
index finger for the first image and with the middle finger for the
second image in a pair. Participants were shown 16 different pairs of
images 5 times each for a total of 80 trials. Trials were spread across
two runs of 40 trials each. Images came from one of three categories,
either a face, a scene, or an object. In the second phase of the
experiment, reward learning, participants were tasked with learning
that a subset of B images from the stimulus learning phase led deter-
ministically to reward, while another subset of images led determi-
nistically to a neutral outcome. Each trial consisted of a single image
(1.5 s), followed by an interstimulus interval in which a fixation cross
was displayed (2 s), followed by the outcome (either a dollar bill or a
gray rectangle; 1.5 s), and then finally an intertrial interval (exponen-
tially jittered with mean = 2.5 s, min =0.5 s, max= 10 s). Participants
were told to withhold a response for the image and to respond with
their indexfingerwhen a dollarwas shown andwith theirmiddle finger
when a gray rectangle was shown. Participants saw each of 8 images 10
times for a total of 80 trials. Trials were spread across two runs of 40
trials each. During the third and final phase of the experiment, the
decision phase, participants were tasked with deciding between two
images of the same category (either A v. A or B v. B) presented on the
screen simultaneously. Each trial consisted of a choice (max= 2 s), a
confirmation in which a green rectangle appeared around their choice
(2s-reaction time), and then an intertrial interval (exponentially jittered
withmean= 2.5 s,min=0.5 s,max= 10 s). Participants pressedwith their
indexfinger to choose the imageon the left hand sideof the screen and
with their middle finder to choose the image on the right hand side of
the screen. Participants made 78 choices across a single run of this
phase. Interstimulus intervals and trial ordering was optimized to
minimize the correlation between events throughout each phase of
the task.

Thepairs of stimuli presented throughout the experiment fell into
one of two conditions that were unknown to participants: FanOut and
Fan In trials. Fan Out trials consisted of one A image that could be
followed by either of two B images, while Fan In trials consisted of
either of two A images followed by one B image. During stimulus
learning, eight pairs of images fanned in, while another eight fanned
out. Of the eight pairs from each condition, there were two pairs of
images for each of four possible combinations (e.g. Fan In: A1-B1; A2-
B1; A4-B4; A5-B4; Fan Out: A3-B2; A3-B3; A6-B5; A6-B6). During reward
learning, four B images from each condition were shown (e.g. Fan In:
B2 x2; B5 x2; Fan Out: B1 x2; B4 x2) such that two from each condition
were paired with reward (e.g. Fan In: B1; Fan Out: B2) and two were
paired with a neutral outcome (e.g. Fan In: B4; Fan Out: B5). B3 and
B6 stimuli were not shown during this phase and were not associated
with any outcome. Finally, during the decision phase, participants
made choices between B images that hadbeen directly associatedwith
a reward or neutral outcome (test choices) and between A images that
had been indirectly associated with these outcomes (transfer choices).
Test (e.g. Fan In: B1 v B4; FanOut: B2 v B5) and transfer (e.g. Fan In: A1 v
A4; A2 vA5; FanOut: A3 vA6) choicesweremadebetween images from
the same condition, and never between images from different
conditions.

Participants were told prior to starting the task that they would
need to use the associations they learned throughout the first two

phases of the experiment in order to make choices in the final phase.
Theyweregiven a cover story to aid their learning throughout the task.
Specifically, participants were told that they were a photographer
visiting a new city and would be taking different buses to different
locations. At each location, they would be shown a picture they had
taken there, and the purpose of the first phase was to learn which
photos were taken along each bus route. Then, during the reward
learning phase, participants were told that they had returned from
their trip and had sent their photos to clients for potential purchase.
They were then shown which photos had been purchased and which
had not, and their goal was to learn this information. Lastly, during the
decision phase, participants were told that they were planning a new
trip to the city and were tasked with deciding between bus routes
(represented by photos taken on each route) that would take them to
locations where they had taken photos their clients purchased. Parti-
cipantswere instructed to usewhat they had learned (i.e. which photos
were taken along the same route and which were or were not pur-
chased) to inform their choices.

MRI acquisition
MRI data were collected on a 3 T Siemens Magnetom Prisma scanner
with a 64-channel head coil. Functional images were acquired using a
multiband echo-planer imaging (EPI) sequence (repetition time = 1.5 s,
echo time = 30ms, flip angle = 65˚, acceleration factor = 3, voxel size =
2mm iso, acquisition matrix 96 × 96). Sixty nine oblique axial slices
(14˚ transverse to coronal) were acquired in an interleaved order and
spaced 2mm to achieve full brain coverage. Whole-brain high resolu-
tion (1mm iso) T1-weighted structural images were acquired with a
magnetization-prepared rapid acquisition gradient-echo (MPRAGE)
sequence. Field maps consisting of 69 oblique axial slices (2mm iso-
tropic) were collected to aid registration.

Imaging data preprocessing
Results included in this manuscript come from preprocessing per-
formed using fMRIPrep 20.2.6, which is based on Nipype 1.7.055.

Anatomical datapreprocessing. Eachparticipant’s T1-weighted (T1w)
image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection56, distributed with ANTs 2.3.357 and used as a
reference image throughout the workflow. The reference image was
then skull-stripped with a Nipype implementation of the antsBrainEx-
traction.sh workflow (from ANTs), using OASIS30ANTs as target tem-
plate. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-
extracted T1w using fast58 (FSL 5.0.9). Volume-based spatial normal-
ization to the ICBM 152 Nonlinear Asymmetrical template version 2009c
(MNI152NLin2009cAsym) standard space was performed through
nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of both the T1w reference and the T1w template
images.

Functional Data Preprocessing. For each of the 5 BOLD runs per
participant (two stimulus learning runs, two reward learning runs, and
one choice run), the following preprocessing was performed. First, a
reference volumeand its skull-stripped versionwere generated using a
custom methodology of fMRIPrep. A B0-nonuniformity map (or field-
map) was estimated based on two (ormore) echo-planar imaging (EPI)
references with opposing phase-encoding directions, with 3dQwarp59

(AFNI 20160207). Based on the estimated susceptibility distortion, a
corrected EPI reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was
then co-registered to the T1w reference using bbregister (FreeSurfer)
which implements boundary-based registration60. Co-registration was
configuredwith six degrees of freedom. Head-motion parameters with
respect to the BOLD reference (transformation matrices, and six
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corresponding rotation and translation parameters) were estimated
before any spatiotemporal filtering using mcflirt61 (FSL 5.0.9). BOLD
runswere slice-time corrected to 0.708 s (0.5 of slice acquisition range
0s–1.42 s) using 3dTshift from AFNI 2016020759. The BOLD time-series
(including slice-timing correction when applied) were resampled onto
their original, native space by applying a single, composite transform
to correct for head-motion and susceptibility distortions. The BOLD
time-series were resampled into standard space, generating a pre-
processed BOLD run in MNI152NLin2009cAsym space. First, a refer-
ence volume and its skull-stripped version were generated using a
custom methodology of fMRIPrep. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise dis-
placement (FD), DVARS and three region-wise global signals. FD was
computed using two formulations following Power (absolute sum of
relative motions)62 and Jenkinson (relative root mean square dis-
placement between affines)61. FD and DVARS are calculated for each
functional run, both using their implementations in Nipype. The three
global signals are extracted within the CSF, the WM, and the whole-
brain masks. The head-motion estimates calculated in the correction
step were also placed within the corresponding confounds file. The
confound time series derived from head motion estimates and global
signals were expanded with the inclusion of temporal derivatives and
quadratic terms for each63. Frames that exceeded a threshold of
0.5mm FD or 1.5 standardized DVARS were annotated as motion
outliers. All resamplings can be performed with a single interpolation
step by composing all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction when avail-
able, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels64. Preprocessed data were lastly
smoothed using a Gaussian kernel with a FWHM of 6.0mm, masked,
and mean-scaled over time.

Functional imaging data analysis
Beta series modeling. Least squares separate (LSS) models were
generated for each event (presentation of a category image) in each
task following the method described in Turner et al.65 using Nistats
0.0.1b2. For each trial, preprocessed data were subjected to a general
linear model in which the trial wasmodeled in its own regressor, while
all other trials from that conditionweremodeled ina second regressor,
and other conditions were modeled in their own regressors. Each
condition regressor was convolved with the glover hemodynamic
response function for the model. In addition to condition regressors,
36 nuisance regressors were included in eachmodel consisting of two
physiological time series (the mean WM and CSF signals), the global
signal, six head-motion parameters, their derivatives, quadratic terms,
and squares of derivatives. Spike regression was additionally per-
formed by including a regressor for each motion outlier identified in
each run, as in Satterthwaite et al.63. A high-pass filter of 0.0078125Hz,
implemented using a cosine drift model, was also included in each
model and AR(1) prewhitening was applied to each model to account
for temporal autocorrelation. After fitting each model, the parameter
estimate (i.e., beta)map associatedwith the target trial’s regressorwas
retained and used for further analysis. Modeling was performed using
NiBetaSeries 0.6.066 which is based on Nipype 1.4.255. Beta maps for
image presentation events, separated by category, for the stimulus
learning and reward learning phases and for decisions between ima-
ges, again separated by category, were used in subsequent analyses.

Multivariate pattern decoding analysis. Beta maps from each trial
were next used for multivariate pattern analysis. First, a searchlight
classification analysis was conducted for each participant. In brief, a
three-way one versus all logistic regression classifier was trained to
distinguish categories using leave-one-run-out cross validation from

runs of the stimulus learning task. We used winner-take-all labeling to
determine the classified label from each trial: the category resulting in
the highest probability from the one versus all classification procedure
on a given trial was selected as the predicted label for that trial. Input
data were selected using a spherical searchlight (radius = 2 voxels)
moved around the whole brain. Although the experimental design
leads the class labels for each category to be imbalanced during the
stimulus learning phase (i.e. one label always has twice as many
occurrences as the other two), wedealtwith this label imbalance in two
ways. First, the class weights applied to each category by the classifier
were determined using the ‘balanced’ keyword in sklearn67 such that
the weights were the number of samples divided by the number of
labels (3) multiplied by the total number of occurrences of each label.
Second, ourmetric of performancewas theweighted-F1 score, which is
the harmonic mean of precision and recall. Each of these methods are
commonly used in the machine learning literature to deal with class
imbalance in training data. For each searchlight sphere,weadditionally
computed chance performance via a permutation test: labels were
shuffled 1000 times and the weighted F1-score resulting from each of
these permutations was computed. Chance classification performance
was then calculated as the 95th percentile of the F1-score permutation
distribution. For each voxel, we then subtracted chance level perfor-
mance from the classification accuracy to produce a map of corrected
classification performance for each participant. Finally, an FDR-
corrected (q < 0.05) group-level map over all individual participant
difference maps was created.

Following classifier training on the stimulus learning phase, we
then tested the classifier on runs from both the reward learning and
decision phases. Functional data from each participant on each of
these phases of the experiment was first masked using the group-level
searchlight map produced from the previously described procedure.
The three-way logistic regression classifier was then re-trained on both
runs of the stimulus learning phase, using only these voxels, and then
tested separately on the reward learning and decision phases. L1-
regularization was used to reduce overfitting in this procedure. We
again used the weighted F1-score as our accuracy metric, and the 95th

percentile of the permutation distribution as our measure of chance
classifier performance.

Finally, to address our primary question, we created an index of
memory reactivation from the classifier. Specifically, for each trial,
we extracted the probability that the classifier assigned to each
category label. A trial was then considered a trial on which memory
reactivation occurred if the following criteria were met: i) the true
category label was assigned the highest probability by the classifier
and ii) the associated category was assigned the second highest
probability by the classifier. If these criteria were met, the trial was
assigned a one and, if not, a zero. Our logic for using this criteria was
conservative: we reasoned that the classifier should always assign the
highest probability to the category represented by the image that is
presently shown on the screen. Because, by definition, both off-
screen categories were candidates for association when presented as
part of Fan In trials during the reward learning phase, wewere unable
to calculate a reactivation score for these trials. We were further
limited in our ability to compare reactivation across phases because
the classifier was more accurate at identifying category images pre-
sented during the decision phase than during the reward learning
phase. This is problematic because lower classification accuracy
causes lower reactivation scores because fewer trials satisfy the cri-
teria outlined above.Wewere, however, able to investigate individual
differences in reactivation for Fan Out trials between phases by
accounting for this difference in classification performance by
z-scoring reactivation scores within each phase, as this removes
group-level differences while leaving individual differences intact.
These standardized reactivation scores were used only for analyses
involving comparison between phases of the experiment.
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Regression analyses. Unless otherwise noted, parameters for all
regression models described here were estimated using hierarchical
Bayesian inference such that group-level priorswere used to regularize
participant-level estimates. The joint posterior was approximated
using No-U-Turn Sampling68 as implemented in stan. Four chains with
2000 samples (1000discarded as burn-in) were run for a total of 4000
posterior samples per model. Chain convergence was determined by
ensuring that the Gelman-Rubin statistic R̂ was close to 1. Default
weakly-informative priors implemented in the rstanarm69 package
were used for each regression model. For all models, fixed effects are
reported in the text as the mean of each parameter’s marginal pos-
terior distribution alongside 95% or 90% credible intervals, which
indicate where that percentage of the posterior density falls. Para-
meter values outside of this range are unlikely given the model, data,
and priors. Thus, if the range of likely values does not include zero, we
conclude that a meaningful effect was observed.

Wefirst assessed choiceperformanceon the decision phase of the
task. For each participant. s and trial t, a mixed effects logistic
regression was used to predict if the correct image was chosen:

pðCorrecttÞ= σðβ0 +b0, s t½ � +Conditiontðβ1 +b1, s t½ �ÞÞ ð1Þ

σðxÞ= 1
1 + e�x

ð2Þ

where Correct was equal to 1 if the participant chose either the image
directly associated with reward (in the case of test trials) or the image
indirectly associated with reward (in the case of transfer trials), and
Condition was a categorical variable coded as 0.5 for Fan In trials and
-0.5 for Fan Out trials. This model was fit separately for test and
transfer choices.

We also assessed the relationship between response time and
accuracy during transfer choices using the following mixed effects
logistic regression, which included an additional main effect of
response time as well the interaction between response time and
condition:

pðCorrecttÞ = σðβ0 +b0, s t½ � +Conditiont*ðβ1 +b1, s t½ �Þ+RTt * ðβ2 +b2, s t½ �Þ
+Conditiont X RTt*ðβ3 +b3, s t½ �ÞÞ

ð3Þ

where RT was the response time on each transfer choice trial.
We determined the ability of the trained MVPA classifier to dis-

tinguish each category label from chance using the following mixed
effects linear regression:

Accuracy� Chance=β0 +b0, s t½ � +Phasetðβ1 +b1, s t½ �Þ ð4Þ

where Accuracy� Chance was the 95th percentile of the permutation
distribution subtracted from classification accuracy, and Phase was a
categorical variable coded as0.5 for the decision phase and -0.5 for the
reward learning phase. Thismodel was fit separately for each category
(face, scene and object).

Another set of models was fit to assess the relationship between
memory reactivation and transfer choice behavior. Analyses were
conducted on the average reactivation level of each stimulus. In order
to assess effects of reactivation on transfer accuracy for each stimulus,
i, accuracy was first transformed70 to ensure that all responses fell
within the interval (0,1):

TransAcc0i =
TransAcci N � 1ð Þ+0:5

N
ð5Þ

where TransAcc was participants’ average transfer accuracy for each
consequent stimulus andNwas the sample size (39).We first examined
the effect of (z-scored) differences in reactivation between the reward

learning and decision phases for each associated antecedent-
consequent pair of Fan Out stimuli on transfer accuracy. To do so,
we fit a mixed effects beta regression:

logitðTransAcc0iÞ=β0 +b0, s½i� +ΔReactivationtðβ1 +b1, s i½ �Þ ð6Þ

whereΔReactivation is thedifference inmemory reactivation between
reward learning and the decision phase for each pair. Similar beta
regressions were used to assess effects of memory reactivation during
the decision phase for Fan In and Fan Out consequent stimuli, sepa-
rately. To assess effects on choice transfer response time, linearmixed
effects regressions with the same predictors were used instead.

We additionally assessed how memory reactivation differed for
each condition (Fan In or Fan Out) during the decision phase. We
performed this analysis using the following mixed-effects linear
regression:

Reactivation= β0 + b0, s +Conditionðβ1 + b1, sÞ ð7Þ

where Reactivation was memory reactivation during the decision
phase for each participant and condition and Condition was coded
identically to the models described above.

Lastly, we examined individual differences in strategy usage by
comparing our reactivation measures across phases of the task. Spe-
cifically, we fit a simple linear regression predicting each participants’
average level of memory reactivation for Fan Out during reward
learning from their difference in memory reactivation during the
decision phase.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Preprocessed fMRI data that support the findings of this study are
available in GIN with identifier: https://doi.org/10.12751/g-node.
ee5wx3. Raw fMRI data are available from the corresponding author
upon request. Raw behavioral data are available in a CodeOcean cap-
sule with identifier: https://doi.org/10.24433/CO.2559896.v1.

Code availability
The code used to generate the results of this study are available as a
CodeOcean capsule with identifier: https://doi.org/10.24433/CO.
2559896.v1.
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