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Abstract
Our experiences contain countless details that may be important in the future, yet we rarely know which will matter and which won’t.
This uncertainty poses a difficult challenge for adaptive decision making, as failing to preserve relevant information can prevent us
from making good choices later on. One solution to this challenge is to store detailed memories of individual experiences that can
be flexibly accessed whenever their details become relevant. By allowing us to store and recall specific events in vivid detail, the
human episodic memory system provides exactly this capacity. Yet whether and how this ability supports adaptive behavior is poorly
understood. Here we aimed to determine whether people use detailed episodic memories to make decisions when future task demands
are uncertain. We hypothesized that the episodic memory system’s ability to store events in great detail allows us to reference any of
these details if they later become relevant. We tested this hypothesis using a novel decision making task where participants encoded
individual events with multiple features and later made decisions based on these features to maximize their earnings. Across four
experiments (total n = 472), we found that participants referenced episodic memories during decisions in feature-rich environments,
and that they did so specifically when it was unclear at encoding which features would be needed in the future. Overall, these findings
reveal a fundamental adaptive function of episodic memory, showing how its rich representational capacity enables flexible decision
making under uncertainty.

Keywords: decision making; episodic memory; incremental learning

1 Introduction

Humans possess the remarkable capacity to remember individual events from the past in high fidelity using our episodic memory
system1,2. From merely a single exposure, we can recall complex experiences consisting of many different details — the taste of a
meal, the layout of a restaurant, the conversation around a dinner table — even when it is unclear whether we will actually ever need
any of this information again. Why do we maintain such detailed memories of past events?

One possible answer is that this ability is adaptive, because the aspects of an experience that will be relevant for future behavior are
rarely apparent when they are first encountered. For instance, when deciding whether to visit a restaurant, you may need to recall
details that weren’t previously important during your prior meals there, such as whether the menu can accommodate your vegan
friend or if the ambiance is appropriate for a work meeting. By storing detailed representations of past experiences, our episodic
memory system can allow us to access any of these details if they ever become relevant in the future. In this way, episodic memory
may enable flexible decision making by allowing us to repurpose our memories for novel goals.

Despite a long history of work on the adaptive role of episodic memory3,4,5,6, computational research has only recently started to char-
acterize the advantages it can provide for decision making7,8,9. A key theme in this work is that the episodic memory system is poised
to address several shortcomings faced by other forms of memory, particularly incremental learning, which aids decision making by
allowing us to gradually estimate the value of different choice options over many repeated encounters10,11,12,13,14,15,16. Importantly,
incremental learning suffers from a well-known problem called the curse of dimensionality, which arises because computational and
memory demands rapidly scale with the richness of what must be learned17. For instance, when learning about choice options with
multiple features, an agent capable of only incremental learning would need to track and update values for each independently.

One way humans may circumvent this issue is by selectively learning about only the most relevant features of experience while
ignoring information about the rest18. Using selective attention in this way can allow for efficient decisions in high-dimensional
environments — when a feature is deemed relevant, its value is tracked and incrementally updated, requiring only a simple retrieval
at choice time. Such a strategy is highly effective under circumstances in which feature relevance can be reliably inferred, and people
likely employ it when this is the case19,20. But environments like this are, in reality, rare. Further, augmenting incremental learning
with selective attention enforces rigidity, ultimately harming future choices that may depend on features that were initially ignored.
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There are also fundamental limits to the number of features that can be reasonably attended to and tracked simultaneously21, making
this strategy increasingly impractical in the real world. These limitations are precisely the types of problems that episodic memory’s
detailed representations are best equipped to address.

A separate but related challenge is that incremental learning is most successful when experiences are repeated, yet actual experiences
are unlikely to be encountered more than a single time. Episodic memory, by contrast, allows us to encode and retrieve individual
experiences, making it naturally suited to real world environments where experiences rarely repeat8. Indeed, this capacity for
one-shot learning has dominated research on episodic memory’s role in decision making, where much work has demonstrated that
humans can effectively guide their decisions by retrieving and leveraging individual past experiences22,23,24,25,26,27. Yet, despite this
progress, whether the episodic memory system’s ability to encode detailed experiences provides its own advantages for decision
making remains largely unknown. Our primary goal was to address this gap.

Here we hypothesized that i) people use episodic memory to access details from past events for decision making in feature-rich
environments, and that ii) this strategy enables flexibility when it is unclear which details will be needed in the future. To directly
test these ideas, we developed a novel decision making task where participants were asked to encode individual episodes consisting
of items that varied across multiple features (e.g., color and category) and an associated reward (Figure 1A-B). After encoding
these episodes, participants made value-based decisions in which they were shown offers consisting of specific features (e.g., red or
animal), and were then asked to either take or leave each offer. In order to determine the value of these offers, participants needed to
sum the rewards associated with all items that had the offered feature in common (e.g., all red things).

Importantly, this task could be solved using two different strategies, corresponding to either using episodic memory at choice time (an
episodic strategy) or using incremental learning and selective attention at initial encoding (a feature-based strategy). To accomplish
the former, participants could use episodic memory to compute an offer’s value ”on-the-fly” during their decisions by retrieving and
summing the rewards associated with each offer-relevant item. Alternatively, they could instead attend to individual features during
encoding and precompute a sum for each. While the episodic strategy offers more flexibility because episodes can be repurposed
according to present demands, it comes at the expense of greater computation at choice time. Likewise, the feature-based strategy may
yield more efficient decisions because it removes the need to reference individual episodes during decision making, but sacrifices
flexibility. This is one instance of a broader tradeoff between computational efficiency and flexibility seen across learning and
decision-making systems in the brain28,29,11,8.

We examined the extent to which participants engaged in these two strategies using several variants of this task across four different
experiments (total n = 472), finding evidence that humans use episodic memory to flexibly access features of past experience during
decision making specifically when future task demands are unknown.

2 Results

2.1 Episodic memory allows access to details from past events for decision making

In experiment one, we first aimed to test whether people primarily rely on episodic memory rather than feature-based selective
attention when making decisions in environments with multiple features. We hypothesized that the computational demands of
tracking multiple features simultaneously would make a feature-based strategy impractical, leading participants to instead use
episodic memory to compute offer values at the time of choice. We tested this hypothesis in two independent samples to en-
sure the replicability of our findings. Before addressing our primary question, we first examined whether participants learned
to make effective decisions in the task. At the group-level, participants in both samples tended to take positive and to leave
negative offers (Sample A: Maccuracy = 63.6% ± 1.5, β0 = 0.46,95% HDI = [0.33,0.59]; Sample B: Maccuracy = 60.8% ± 2.3,
β0 = 0.36,95% HDI = [0.17,0.55]), despite substantial inter-individual variability (Figure 2A). Participants’ choices therefore re-
flected their ability to compute the value of each offer by summing over individual experiences.

Our next goal was to examine whether participants maintained memory traces for the individual episodes they encoded in the first
part of each round. To accomplish this, our experiment required participants to complete an additional memory phase immediately
after the decision making phase of each round (Figure 1A). This memory phase consisted of two parts in which participants were
asked to remember both elements of the episodes they had seen: they were first asked to freely recall each of the six items from a
round, and then to recall the reward that was associated with each item. Participants had robust memory for the individual episodes,
remembering between three and four items, on average (Sample A: Mrecall = 63%±2.5; Sample B: Mrecall = 64.7%±2.8; Figure
2B), which was well above chance-level recall (Sample A: β0 = 0.26,95% HDI = [0.20,0.31]; Sample B: β0 = 0.27,95% HDI =
[0.22,0.33]). Item recalls exhibited classic properties of episodic memory, with items presented close together during encoding
being more likely to be recalled consecutively (temporal contiguity effect31; Figure S2), providing further evidence that participants
engaged episodic memory during the task. Participants also accurately remembered the rewards associated with each item, showing a
strong positive relationship between remembered and actual rewards (Sample A: βreward = 0.52,95% HDI = [0.44,0.59]; Sample B:
βreward = 0.47,95% HDI = [0.37,0.56]; Figure S3). These results demonstrate that participants formed and retained strong memories
for each episode beyond the decision making phase, and that individual memories were available for potential recall at choice time.
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Figure 1: Task Design. A) The four phases completed by participants in each round of the task used in all experiments. In the first
part of a round, participants completed an encoding phase which allowed them to encode individual items and an associated reward
(an episode). Immediately after viewing the episode, participants completed an attention check consisting of the item alongside two
options, either the associated reward that was just shown or another randomly selected reward. Following encoding, participants then
completed a 90 second distractor task consisting of a 2-back working memory task. This was designed to prevent active rehearsal of
the episodes. Following the distractor, participants completed a decision phase in which they were shown offers consisting of a single
feature and were asked to either take or leave this offer. The value of each offer was the sum of all episodes described by the offer.
Lastly, after the decision phase, participants completed a subsequent memory test consisting of two tasks. They were first asked to
freely recall each of the items they had seen in the round. They were then shown each item and asked to provide the reward that was
associated with each item. Participants completed between 5 and 9 rounds, depending on the experiment. B) The full set of stimuli
shown to participants in experiments one, three, and four. Stimuli differed along two dimensions: color and category. A subset
of six images were sampled from these to be shown in each round (with an example shown in red). See Figure S1 for the stimuli
used in experiment two. C) Simulated choice behavior on the decision phase from two toy process models implementing either
an episodic or feature-based decision strategy (See Methods for details). During each offer, the episodic model randomly samples
individual items and their associated reward without replacement. To make choices, it then sums up the recalled rewards associated
with all recalled offer-relevant items that match the offer, and then chooses to either take or leave each offer depending on whether
this decision variable was positive or negative, respectively. This strategy leads to longer decisions when more memories have been
retrieved (top). Its decision variable, (the recalled offer value), also differs from the true offer value due to the items and associated
rewards that the model actually recalls on each decision (bottom), and can be used to more strongly predict choices. In contrast, the
feature-based model instead sums up the value of rewards associated with each feature at encoding time and chooses with some noise
at decision time, leading to neither of these predictions. D) The feature uncertainty manipulation used in experiments three and four.
On half of the rounds, participants were informed either before or after encoding about which type of offers they would be given
in the future. For experiment three, the screen showed either color or category offers, and for experiment four it showed a specific
instance of either color or category (e.g., red, blue, object, etc.).

Next, in order to disambiguate between the episodic and feature-based strategies, we used participants’ responses on the memory
phase to analyze their choice behavior. First, we reasoned that recalling an individual episode should take time32,33,31 and that,
accordingly, the amount of time it takes to make a decision should scale with the number of episodes that are referenced (Figure
1C). Importantly, the feature-based strategy makes no such prediction, as only a single item (a precomputed offer value) must be
retrieved at choice time. To test this idea, we first used participants’ free recall data to determine the total number of items that
they accurately recalled on each round of the task. We then examined whether they took longer to respond to offers during rounds
on which they recalled more items overall. As predicted, participants took longer to decide when they subsequently recalled more
memories (Sample A: βnMemories = 0.05,95% HDI = [0.02,0.08]; Sample B: βnMemories = 0.07,95% HDI = [0.03,0.11]; Figure 2C).
We next conducted a complementary analysis examining whether decision response times were specifically related to the number of
offer-relevant memories recalled — that is, only those memories whose features matched each offer (e.g., only recalled red items for
offers about red things). Interestingly, we found no consistent relationship between response times and the number of offer-relevant
memories recalled (see Table S1 for results across all experiments). Together, these results suggest that rather than accessing only
the memories that are strictly needed for each decision, participants retrieved all of their available memories, presumably selecting
from these memories only the trial-relevant information before making a choice.

Having established that participants appeared to access individual memories during their decisions, we moved to examine the actual
choices they made. We reasoned that if their decisions were based on the rewards they remembered being associated with each item,
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Figure 2: People use episodic memory to make decisions in multi-feature environments. A) Participants’ overall choice accuracy
during the decision phase, shown for Experiment 1 (Samples A and B) and Experiment 2. Chance performance is represented by
the horizontal line. Large points represent-group-level averages with error bars representing standard error. Small points represent
average choice accuracy for individual participants. B) Participants’ rate of accurately recalling items seen in each round during the
free recall portion of the memory phase. Recall rates were defined as the proportion of items that were accurately recalled relative
to all items that were shown. Chance performance is represented by the horizontal line. Large points represent group-level averages
with error bars representing standard error. Small points represent average recall rates for individual participants. C) Participants’
decision response times (log transformed) as a function of the number of memories that they accurately recalled on each round.
Large lines represent group-level fits of a mixed-effects linear regression model, with individual fits plotted as smaller lines. Points
represent group-level averages with uncertainty represented as standard error. Far right panel: Fixed effects and random effects
slopes (beta) for regression model fits. Boxes represent the fixed effects posterior distribution, with horizontal lines representing the
mean and boxes representing 50%, 80%, and 95% HDIs. Points represented the random effect slopes for each subject. D) Left: The
proportion of offers that were taken as a function of summed true offer value and recalled offer value. Offer values are z-scored to
facilitate comparison. Inlays show the mixed effects slopes for each predictor. Far right panel: Results of comparing the true and
recalled offer value models. Model fit was first assessed using 10-fold cross-validation. The expected log pointwise predictive density
(ELPD) was then computed. Higher ELPD values indicate a higher likelihood of accurately predicting new data. Here the difference
in ELPD between models is shown such that positive values provide more support for the recalled offer value model. Uncertainty in
the comparison is computed as in Vehtari et al. (2017)30.

as predicted by an episodic strategy, their choices should be sensitive to the summed value of these remembered rewards (Figure
1C). To test this, we used participants’ responses on the reward memory portion of the memory phase to determine the recalled value
of each offer. Specifically, we summed over the reported remembered reward of each offer-relevant item that was also recalled during
the free recall phase. In contrast, we expected that evidence for a feature-based strategy would manifest as choices being primarily
driven by the true value of each offer, independent of what participants explicitly remembered. This prediction follows from the
nature of feature-based learning: if participants precomputed feature values during encoding, these cached values would be immune
to later forgetting or distortions of individual episodes. To arbitrate between these possibilities, we fit two logistic regression models
to participants’ choices: one that used the true offer value to predict each choice, and another that used recalled offer value to predict
each choice. We then compared the out-of-sample predictive accuracy of each model using cross-validation.

While participants’ choices were sensitive to both true offer value (Sample A: βtrue = 0.73,95% HDI = [0.56,0.91]; Sample B:
βtrue = 0.61,95% HDI = [0.32,0.92]) and recalled offer value (Sample A: βrecalled = 0.89,95% HDI = [0.69,1.11]; Sample B:
βrecalled = 0.83,95% HDI = [0.55,1.15]), recalled offer value was slightly more effective at predicting held-out choices in both
samples (Sample A: ELPDrecalled−true = 21.00± 15.63, Sample B: ELPDrecalled−true = 13.58± 9.30; Figure 2D, Table S2). This
result indicates that participants tended to rely more heavily on the information contained in individual episodes, namely the identity
and value of items, to make their decisions.
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One limitation of this experiment is that it does not distinguish between two fundamentally different ways that information could
be represented in memory. One possibility, which we have suggested so far, is that experiences are stored as integrated episodes,
where multiple features are bound together into a single conjunctive representation (e.g., ”butterfly”)34,35. Alternatively, individual
experiences could be stored as separate features (e.g., ”blue” and ”animal” as independent elements)36. Although both approaches
could support value computation in our task, the latter becomes increasingly challenging as more features must be maintained and
retrieved. To test this idea, we conducted a second experiment that was nearly identical to experiment one, but where we doubled the
number of features associated with each stimulus (Figure S1). We reasoned that if participants relied upon memories comprised of
separate features, this increased complexity would impair performance. Conversely, if participants encoded integrated episodes, the
natural binding of features should preserve performance despite the additional complexity. As predicted, performance on experiment
two was comparable to experiment one and all results replicated (Figure 2, Table S3), supporting the conclusion that participants
relied on integrated episodic memories rather than separate feature memories to complete the task.

Together, these results demonstrate that when faced with choices that could be based on many different features, participants primarily
employed an episodic strategy that involved retrieving and computing over individual memories at choice time. This finding suggests
that despite the increased computational demands during decision making, people prefer to maintain detailed episodic memories that
can be flexibly accessed rather than attempting to track and update values for multiple features simultaneously. This preference may
reflect the difficulty of implementing a feature-based strategy when faced with the curse of dimensionality, as suggested by previous
theoretical work8.

2.2 Episodic memory enables flexible decision making when it is unclear which details are important

Our findings so far demonstrate that people rely on episodic memory to make decisions in multi-feature environments, in part because
episodic memories provide a natural solution to the curse of dimensionality. However, this observation alone does not fully explain
why episodic memory might be specifically advantageous for decision making. To address this, we next hypothesized that episodic
memory’s key benefit lies in its ability to enable flexible decisions when future task demands are uncertain — a common situation in
the real world. This hypothesis predicts that people should shift away from using episodic memory when they can anticipate which
features will be relevant for their upcoming decisions, as this foreknowledge would make a feature-based strategy more viable. To
test this prediction directly, we next conducted an experiment where we manipulated whether participants knew in advance which
features would be relevant for their decisions.

In experiment three, we contrasted two conditions: one where participants learned which features would be relevant only at choice
time (after encoding), and another where participants knew before encoding which features would be needed for their upcoming
decisions (Figure 1C). Specifically, in this new before condition, participants were told prior to encoding that they would later
receive offers about color or category, but not both. This manipulation created conditions where the feature-based strategy is more
feasible, as participants could safely ignore irrelevant features (e.g., category when only color offers would be made). This advantage
was absent in the after condition, where feature relevance remained uncertain during encoding. We predicted that people would
primarily rely on an episodic strategy in the after condition, but would shift toward a feature-based strategy when feature relevance
was known in advance. We again tested this prediction across two independent samples to ensure the replicability of our findings.

Participants responded accurately, primarily taking positive and leaving negative offers both during rounds in which feature relevance
was communicated before encoding (Sample A: M = 68.5%±2.9, β0 = 0.86,95% HDI = [0.62,1.33]; Sample B: M = 71.7%±1.9,
β0 = 1.00,95% HDI = [0.81,1.21]) and after encoding (Sample A: M = 59.7%± 2.9, β0 = 0.43,95% HDI = [0.20,0.66]; Sample
B: M = 63.3%± 2.2, β0 = 0.62,95% HDI = [0.41,0.83]; Figure 3A). Notably, participants chose more accurately in the before
condition (by an average of 8.8% and 8.4% in each sample, respectively), suggesting that there were clear benefits to performance
when feature relevance was known during encoding. Importantly, though, performance in the after condition was on par with our
prior experiments.

We next aimed to test our primary hypothesis. As predicted, in the after condition participants took longer to make decisions when
they recalled more memories (Sample A: βnMemories = 0.08,95% HDI = [0.04,0.12]; Sample B: βnMemories = 0.06,95% HDI =
[0.02,0.11]; Figure 3B). Yet, we found little evidence for this relationship in the before condition, when participants were aware
of which features they would need for their future decisions (Sample A: βnMemories = 0.02,95% HDI = [−0.04,0.07]; Sample B:
βnMemories = 0.03,95% HDI = [−0.01,0.07]). We then further examined the extent to which true and recalled offer value predicted
participants’ choices in both conditions. We expected recalled offer value to be a better predictor of choices in the after condition, but
not in the before condition, if participants retrieved episodes during decisions made in the former but not the latter. In line with this
prediction, recalled offer value better predicted held-out choices in the after condition but not in the before condition in both samples
(Figure 3C, Table 1; see Table S2 for performance of all models). These results indicate that participants primarily referenced
individual episodes during decision making when it was unclear at encoding which features would be needed for future decisions.

To better understand the source of these differences in strategy recruitment, we next examined participants’ performance on the
memory phase. Specifically, while participants shifted away from using episodic memory when feature relevance was known prior to
decision making, it is unclear whether this effect emerged from changes in how experiences were initially encoded or from whether
they were later accessed during decision making. We reasoned that if participants strategically modified their encoding based on
known feature relevance, they should show impaired subsequent memory for individual episodes in the before condition, as they
would be focused primarily on computing and maintaining feature-level values rather than encoding complete episodic memories.
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Figure 3: Episodic memory is primarily used for decisions when it is unclear what features are important. A) Participants’ choice
accuracy during the decision phase, shown for Experiment 3 (samples A and B). Decisions made when the future relevance of features
was known at encoding (the before condition, in blue) are shown separately from those made when this information was unknown
at encoding (the after condition, in orange). Large points represent-group-level averages with error bars representing standard error.
Small points represent average choice accuracy for individual participants. B) Participants’ decision response times (log transformed)
as a function of the number of memories they accurately recalled on each round for sample A (top) and sample B (bottom). Left:
Large lines represent the group-level fit of a mixed-effects regression, with individual subject fits plotted as smaller lines. Points
represent group-level averages with standard error. Right: Fixed effect slopes and random effect slopes (beta) for regression model
fits. Boxes represent the fixed effects posterior distribution, with horizontal lines representing the mean and boxes representing 50%,
80%, and 95% HDIs. Points represent random effect slopes for each subject. C) The relationship between choices and offer value
for sample A (top) and sample B (bottom). Left: The proportion of offers taken as a function of summed true offer value and recalled
offer value for the Before and After conditions. Mixed effects slopes are plotted as inlays. Right: Model comparison showing the
difference in ELPD alongside standard error. D) Participants’ rate of accurately recalling items seen in each round during the free
recall portion of the memory phase. Chance performance is represented by the horizontal line. Large points represent group-level
averages with error bars representing standard error. Small points represent average recall rates for individual participants.

However, another possibility is that participants instead continued to encode episodic memories alongside precomputing feature
values, consistent with evidence that these distinct systems often operate in parallel during learning25,37,38,39,40. In this case, we
expected to see comparable memory performance between conditions, with task demands influencing whether these memories were
later accessed at choice time rather than whether they were initially stored.

Across both samples, we found that participants maintained strong memories of the episodes encountered in each round regard-
less of condition. Participants accurately recalled individual items with no differences in recall rates between conditions (Sample
A: βa f ter−be f ore = −0.01,95% HDI = [−0.10,0.08]; Sample B: βa f ter−be f ore = −0.01,95% HDI = [−0.07,0.06]; Figure 3D; Ta-
ble 2), and they further showed equally similar memory for the rewards associated with each item (Sample A: βa f ter−be f ore =
−0.06,95% HDI = [−0.18,0.06]; Sample B: βa f ter−be f ore =−0.05,95% HDI = [−0.15,0.05]; Figure S3; Table 2). These findings
demonstrate that participants encoded complete episodic memories regardless of whether they knew which features would be relevant
for future decisions.

Together, these results provide evidence that people selectively use episodic memory for decision making when feature relevance
is unknown during encoding. When participants were aware of which features would be important for decision making prior to
encoding, our results suggested that they no longer retrieved individual memories at choice time. This shift toward the feature-based
strategy is sensible — it reduces computational demands at decision time by allowing direct access to pre-computed feature values
rather than requiring the retrieval and integration of multiple episodic memories. This approach led to improved performance on
expected decisions because the episodic strategy can introduce noise (e.g. though errors in memory retrieval), especially under time
constraints when only a subset of memories might be accessible. Yet we also found that participants maintained detailed episodic
memories in both conditions, suggesting that the differences we observed during decision making emerged from how information
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Condition Sample Model β [95% HDI] ELPDRecalled−True ± SE
Before A True 1.17 [0.76, 1.65] -4.74 ± 10.22

Recalled 1.02 [0.77, 1.31]
B True 1.17 [0.92, 1.46] 12.26 ± 14.50

Recalled 1.27 [1.02, 1.55]
After A True 0.63 [0.31, 0.99] 13.32 ± 7.96

Recalled 0.91 [0.58, 1.28]
B True 0.79 [0.54, 1.06] 44.50 ± 14.13

Recalled 1.29 [1.03, 1.59]

Table 1: Experiment 3 model comparison results showing fixed effects estimates (β) with 95% highest density intervals (HDI) and
difference in expected log pointwise predictive density (ELPD) between true and recalled offer value models.

Experiment Sample Condition Recall Rate ± SE β0 [95% HDI] βreward [95% HDI]
3 A Before 51.8% ± 3.2 0.14 [0.08, 0.21] 0.55 [0.48, 0.62]

After 51.1% ± 2.9 0.14 [0.08, 0.19] 0.49 [0.39, 0.57]
B Before 61.8% ± 2.2 0.24 [0.20, 0.29] 0.53 [0.46, 0.60]

After 61.2% ± 2.3 0.24 [0.19, 0.28] 0.48 [0.41, 0.55]
4 - Before 62.5% ± 1.9 0.25 [0.21, 0.29] 0.54 [0.49, 0.59]

After 61.9% ± 1.9 0.23 [0.19, 0.27] 0.48 [0.42, 0.54]

Table 2: Memory performance across experiments 3 and 4. Recall Rate shows mean percentage of items recalled (± standard error).
β0 represents the intercept of a model predicting recall performance relative to chance. βreward represents the slope of a model
predicting the relationship between remembered and actual rewards.

was accessed at choice time rather than how it was initially encoded. We next aimed to determine whether this parallel maintenance
of episodic memories provided its own adaptive benefits for decision making.

2.3 Episodic memory maintains access to details if they become unexpectedly relevant

The results of experiment three suggest that while participants appeared to rely on a feature-based strategy when feature relevance
was known in advance, they still maintained detailed episodic memories. One prediction that follows from this observation is that
participants should still be able to use their episodic memories to maintain access to features they had initially deemed irrelevant
in order to inform their decisions. In contrast, if participants abandoned episodic encoding entirely, they should struggle to access
information about these irrelevant features.

We designed a fourth experiment in order to test this idea. In experiment four, once participants had completed eight rounds where
the manipulation introduced by experiment three was honored, we asked them to complete a final additional round in which they
were shown all possible offers. Importantly, participants were shown these unexpected offers regardless of whether they had been
told before the encoding phase of this final round that they would see only a subset of offers later on. This allowed us to examine
performance when the final round was completed under the before condition for both expected and unexpected offers. By definition,
all offers shown during the after condition were unexpected. We additionally modified the task to create conditions that would
encourage greater reliance on the feature-based strategy. To accomplish this, we simplified the decision phase by presenting only
a single offer type per round (e.g., ”red”) prior to the final round. This modification meant that participants in the before condition
needed to track only one specific feature value rather than multiple instances of the same feature (e.g., just ”red” instead of all colors),
making the feature-based strategy exceptionally efficient. We predicted that this change would lead participants to rely more heavily
on the feature-based strategy in the before condition relative to experiment three.

We further predicted that participants should show a specific pattern of choice behavior if they maintained access to their episodic
memories despite this increased commitment to the feature-based strategy. First, in response to unexpected final round offers com-
pleted under the before condition, we predicted that participants’ accuracy should drop relative to their performance on previous
rounds. This is because they would no longer be able to rely on the feature-based strategy, which provided clear benefits to per-
formance (improving accuracy by 8-9% in experiment three when feature relevance was known in advance). Second, we predicted
that to make these unexpected decisions, participants would instead need to fall back on using their episodic memories, leading to
accuracy levels similar to their performance in the after condition.

We first examined overall performance on rounds prior to the final round, finding that while participants responded accurately in
both conditions (Before: M = 78.4%± 2.0, β0 = 1.57,95% HDI = [1.29,1.90]; After: M = 55.2%± 2.2, β0 = 0.52,95% HDI =
[0.32,0.74]; Figure 4A), they performed substantially better in the before condition relative to both samples in experiment three.
Participants further showed equivalent memory performance across both conditions, with no differences in recall rates (βa f ter−be f ore =
−0.02,95% HDI = [−0.07,0.04]; Figure 4B; Table 2) or in memory for associated rewards (βa f ter−be f ore = −0.06,95% HDI =
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Figure 4: Episodic memory is used to make choices about unexpected offers. A) Experiment 4 choice accuracy, separated by all
rounds prior to the final round (labeled as previous rounds) and the final round in which participants were asked to make decisions
about both offers they expected (in the before condition) as well as those that were unexpected (in both conditions). Large points
represent-group-level averages with error bars representing standard error. Small points represent average choice accuracy for indi-
vidual participants. By design, only a single offer was expected in the before condition. B) Participants’ rate of accurately recalling
items seen in each round of experiment 4 during the free recall portion of the memory phase. Chance performance is represented by
the horizontal line. Large points represent group-level averages with error bars representing standard error. Small points represent
average recall rates for individual participants. C) Experiment 4 participants’ decision response times (log transformed) as a function
of the number of memories they accurately recalled on each round. Left: Large lines represent the group-level fit of a mixed-effects
regression, with individual subject fits plotted as smaller lines. Points represent group-level averages with standard error. Right:
Fixed effect slopes and random effect slopes for regression model fits. Boxes represent the fixed effects posterior distribution, with
horizontal lines representing the mean and boxes representing 50%, 80%, and 95% HDIs. Points represent random effect slopes for
each subject. D) Left: The proportion of offers taken as a function of summed true offer value and recalled offer value for the before
and after conditions. Mixed effects slopes are plotted as inlays. Right: Model comparison showing the difference in ELPD alongside
standard error.

[−0.14,0.02]; Figure S3; Table 2). These results suggest that although participants were more capable at deciding in the before
condition when they had to compute only the value of a single feature, they still separately maintained episodic memories.

We next asked whether this increase in performance in the before condition was due to participants’ greater reliance on the feature-
based strategy. In line with this interpretation, we found that during the before condition there was virtually no evidence of a positive
relationship between the number of memories recalled and decision response times (βnMemories =−0.02,95% HDI = [−0.07,0.02];
Figure 4C), and participants’ choices were better predicted by true offer value (βtrue = 2.74,95% HDI = [2.03,3.65]) than re-
called offer value (βrecalled = 2.04,95% HDI = [1.49,2.75], ELPDrecalled−true = −26.54± 12.69; Figure 4D, Table S2). In con-
trast, in the after condition, participants showed longer decision response times when more memories were recalled (βnMemories =
0.09,95% HDI = [0.05,0.12]). While participants’ choices in this condition were numerically more sensitive to recalled offer value
(βrecalled = 0.90,95% HDI = [0.59,1.27]) than true offer value (βtrue = 0.79,95% HDI = [0.52,1.10]), both models were equally ca-
pable of predicting held-out choices (ELPDrecalled−true = 1.33±6.97; Figure 4D). This equivalent model performance likely reflects
the limited data available for cross-validation, as participants made substantially fewer decisions per condition in this experiment
compared to experiment three.
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Finally, we turned to test the primary question of this experiment: whether in the final round participants maintained access to
information about the features they were told would be irrelevant for future decisions. As predicted, participants who completed their
final round in the before condition showed impaired performance on unexpected offers compared to their performance on prior rounds
in this condition (M = 57.3%±3.7, β0 = 0.14,95% HDI = [0.04,0.24]; Figure 4A), but maintained high accuracy on expected offers
(M = 78.4%±5.8, β0 =−0.07,95% HDI = [−0.20,0.06]). Critically, participants’ performance on unexpected offers matched that
of the prior rounds in the after condition (β0 = −0.02,95% HDI = [−0.11,0.07]), suggesting they could successfully fall back on
episodic memories when the feature-based strategy was insufficient. Surprisingly, we also found that participants who completed their
final round in the after condition exceeded their prior performance in this condition (M = 66.7%± 3.0, β0 = −0.13,95% HDI =
[−0.21,−0.05]). This improvement may stem from the increased variety of offer types shown in the final round, which provided
participants with more opportunities to make decisions about items they successfully remembered, whereas previous rounds with
fewer offer types may have tested only items for which their memory was weaker.

The results of experiment four suggest that even under conditions that strongly encouraged reliance on a feature-based strategy,
participants maintained detailed episodic memories that they could access when needed. While participants showed clear evidence of
using feature-based computations in the before condition, they were still able to rely upon their episodic memories when faced with
unexpected offers, performing comparably to the after condition. This pattern of results provides evidence that episodic memory may
serve as a ”backup” to aid decisions when initially irrelevant features become unexpectedly relevant.

3 Discussion

Our findings indicate that people flexibly use episodic memory to guide their choices in multi-feature environments, particularly
when future task demands are uncertain. When faced with multiple decision-relevant features (Experiment 1), participants relied
primarily on episodic memories to compute offer values during decision making, as evidenced by both their response times and
choice patterns. This strategy persisted even as feature complexity increased, suggesting that participants stored experiences as
integrated episodes rather than separate feature representations (Experiment 2). When given advance knowledge of feature relevance
(Experiment 3), participants shifted toward a more computationally efficient feature-based strategy that involved precomputing values
during encoding. Yet despite this shift in strategy, participants continued to encode episodic memories, a parallel operation which
proved useful when knowledge about previously irrelevant information was needed for decision making (Experiment 4). Overall,
these results demonstrate that episodic memory serves as an adaptive solution to decision making under uncertainty in complex
environments, allowing us to flexibly repurpose our memories according to the demands of the present.

This work connects at least two established but largely separate literatures on memory and choice. First, a number of studies
focused on decision making have explored the ways in which individual experiences may be recalled for choice41,42,27,43,44. This
research, typically called “decision by sampling”, proposes that decision variables may be constructed by drawing samples from
memory, and explains a number of ways in which peoples’ choice behavior differs when information is learned from experience
rather than instructed descriptions45. Second, other work has proposed that episodic memory plays a critical role in our ability to
infer new information about the world by allowing the formation of new links between past experiences46,47,48. An important but
underappreciated part of this role is episodic memory’s ability to store multiple features of experience, because each feature provides
another opportunity to relate past events with one another. Here we connect these ideas by suggesting that features of episodes may
allow for the formation of new decision variables on-the-fly, when they are needed for a choice.

Our findings add to a substantial body of research which has found that the brain contains multiple memory systems that can operate
independently yet interact continuously39,49,40,50,11,26, with task demands determining which is ultimately recruited for decision
making51,52,53. Our results suggest that this parallel operation is adaptive — while incremental learning can efficiently track relevant
statistics when future demands are known, episodic memory may serve as a crucial ”backup” system by preserving detailed records
of experiences. This is evidenced by participants’ ability to successfully encode detailed episodes in experiments three and four
even while engaging in the feature-based strategy, and by their ability to use these memories to support unexpected decisions when
incremental estimates were poorly calibrated. These findings align with recent computational work9 suggesting that episodic memory
may complement incrementally learned summaries by enabling the computation of new task-relevant statistics when unexpected
events occur. However, it is important to note that structuring our experiments as a series of rounds — where participants knew they
would be tested on their memory after each decision phase — may have encouraged them to maintain episodic memories regardless
of condition. Future work using a more continuous task design with surprise memory tests is necessary to fully disentangle these
possibilities.

Separately, the specific pattern of episodic memory access we observed highlights important limitations of our experimental approach.
Specifically, we found that participants’ decision times scaled with their total number of memories in each round rather than just
those relevant to each offer, suggesting that they retrieved all available memories regardless of their relevance to the current decision.
One plausible explanation for this finding is that during their decisions, participants cycled through all of their memories, rejecting
those that did not match the current offer. This particular retrieval strategy was enabled by our design — with only six candidate
memories per round and a lengthy response period during each decision — but it is clearly unrealistic for real-world decisions
where we have many more memories to consider. Importantly, extensive research on memory recall suggests that some intrusion
of ”irrelevant” related memories is inevitable during retrieval31, supporting our general findings even if the specific type of retrieval
strategy observed here does not scale. Similarly, our task’s simplified feature space, while allowing us to characterize episodic
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memory use in a controlled setting, still remains far simpler than real world experience, which can consist of vast numbers of features.
Although participants’ choice behavior was largely unaltered by the addition of new features in experiment two, this setting was still
far from naturalistic, and it remains possible that further increases to feature dimensionality could reveal more subtle differences.
Moreover, in our design we made the simplifying assumption that episodes consist of perfect recollections of experienced details,
when in reality these details are often substantially compressed and abstracted54,55,56,57. Future work using larger memory sets and
higher-dimensional stimuli will be important for resolving these issues.

An important next step further lies in characterizing how the various organizational principles of episodic memory guide choice.
Classic computational models of memory retrieval have formalized how memories are naturally organized and accessed according
to their temporal proximity and semantic relationships58,59,60. This work suggests that when we retrieve a memory, it automatically
triggers the recall of other memories that, for instance, occurred nearby in time or share meaningful features. Indeed, participants in
our experiments showed a clear tendency to consecutively recall items that were presented close together during encoding (Figure
S3). Such organizational principles are likely central to memory-guided decision making, as evidenced by findings demonstrating
that choices are systematically influenced by temporally proximate experiences22, by the context present during both encoding23 and
decision making61,23, and by semantic similarity between experiences27,62. While our results show that people can effectively use
episodic memories for flexible decision making, they do not reveal the specific mechanisms by which memories are accessed. Our
behavioral measures were designed to be predicted by basic properties of episodic memory recall and so remain agnostic toward any
particular model or sampling algorithm. Indeed, these findings could theoretically arise from many different memory sampling strate-
gies — from random sampling (as in our toy process model) to more structured retrieval guided by these organizational principles.
Applying formal memory models to value-based choice could provide a more precise account of how memories are actually accessed
during decision making, while potentially revealing new principles about how memory organization shapes adaptive behavior. Doing
so will require not only experimental paradigms that more closely approximate real-world decision making, where people draw upon
vast numbers of feature-rich experiences across extended timescales, but also methodology to measure direct memory access during
decision making itself.

Related to this point, a critical feature of our experimental design was that we collected memory measures immediately following
participants’ choices rather than during decision making. We did not ask participants to directly recall items during their decisions
because our aim was to assess the strategy participants relied upon without instructing them to use any strategy in particular, and we
reasoned that this approach may bias them toward using their episodic memories for choice. One way to circumvent this limitation
would be to record neural activity during the decision phase. For example, past approaches using magnetoencephalography (MEG)
have successfully decoded both the recall of individual episodes during standard memory tasks63,64 and the rapid replay of sequences
of memories during decision making65,66,67. One possible future direction would be to similarly attempt to decode memory access
during the decision phase of our task design. In addition to providing direct evidence for the recall of individual memories during
choice, taking such an approach may provide multiple insights into the ways in which value is computed from memories, for instance
by testing hypotheses about the number, temporal order, and semantic relationships between recalled memories during decision
making.

In conclusion, our results demonstrate that episodic memory plays an important role in enabling flexible decision making when future
task demands are unknown. By maintaining detailed representations of individual experiences, episodic memory allows us to access
details from our past if they become relevant for present decisions. This flexibility comes at the cost of increased computational
demands during choice, leading people to adopt more efficient strategies based on precomputing decision variables when possible.
Recent work on the timing of memory-based decisions supports this view, showing that people proactively compute value from
memory whenever circumstances allow them to anticipate future choice requirements68. Together, these findings suggest that one
reason why we maintain detailed memories of the past is to help us flexibly adapt to an uncertain future.

4 Methods

4.1 Experimental Procedure

Unless otherwise noted, all procedures were identical across experiments, and differences between experiments are summarized in
Table 3. Participants completed a four-part task over the course of a single online session designed to measure whether people access
individual episodes to make decisions based on multiple features of past experiences (Figure 1A). Completing all four parts (a round)
took approximately five minutes, and participants completed five (Experiment 1), seven (Experiment 2), or eight (Experiments 3 and
4) rounds in total.

4.1.1 Stimuli

In all experiments except Experiment 2, stimuli varied across two features: color (red, yellow, blue, or green) and category (animal,
object, food, scene). In Experiment 2, stimuli instead varied across four binary features: pattern (with or without a pattern), location
(aquatic or not aquatic), animacy (animal or object), and size (larger or smaller than a microwave). In all experiments, a total of
sixteen possible items were used, with a subset of six pseudo-randomly sampled to be used in each round. All two-feature items and
an example subset (highlighted in red) are shown in Figure 1B. As demonstrated in that figure, the six items used in each round were
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Experiment 1 Experiment 2 Experiment 3 Experiment 4
Number of rounds 5 7 8 9
Number of stimulus
features

2: color and cate-
gory

4: pattern, lo-
cation, animacy,
size

2: color and cate-
gory

2: color and cate-
gory

Reward range -9 to 9 -2 to 2 -2 to 2 -2 to 2
Decisions per round Sample A: 6

Sample B: 3
4 Sample A: 3

Sample B: 3
1 (6 in final
round)

Feature uncertainty
manipulation

No No Yes Yes

Surprise choice ma-
nipulation

No No No Yes

Table 3: Summary of Experimental Differences

selected such that there were always three items with a specific instantiation of each feature (e.g. three green items, three animals),
two of another type (e.g. two blue items, two objects), and one of another type (e.g. one food, one yellow). Items were further
selected to be roughly balanced across all rounds and were shown either 2 or 3 times in total.

4.1.2 Encoding Phase

In the first part of a round, participants completed a task designed to allow them to encode individual items and an associated reward
(which we refer to throughout as an episode). Each item was presented on the screen for 1 second, after which its reward appeared
alongside it for another 6 seconds. An item’s associated reward was a pseudo-randomly sampled integer (excluding 0) between either
-9 and 9 (Experiment 1) or between -2 and 2 (Experiments 2, 3, and 4). In order to create a balance of future offer values in each
round, the reward assignment algorithm ensured that i) an equal balance of positive and negative reward was used in each round,
ii) no feature dimension (e.g. blue or object) had a summed value of exactly zero, and that iii) at least one feature dimension had a
positive summed value and at least one had a negative total value. Immediately after viewing the episode, participants completed an
attention check consisting of the item alongside two options, either the associated reward that was just shown or another randomly
selected reward. They had 3 seconds to respond. Each episode was viewed only once, for a total of six trials per round.

4.1.3 Distractor Phase

Immediately following the encoding task, participants completed a 90 second distractor task to prevent active rehearsal of the
episodes. This distractor consisted of a 2-back working memory task in which participants were shown one of several letters in
sequence. Participants were asked to identify whether the current letter matched the one presented two steps earlier.

4.1.4 Decision Phase

Immediately following the distractor task, participants then made up to six decisions based on the features of each item (6 decisions:
Experiment 1 (sample A); 4 decisions: Experiment 2; 3 decisions: Experiments 1 (sample B), 3; 1 decision: Experiment 4). Each
decision consisted of an offer in which a single feature (e.g. animal) was displayed on the screen, and participants were asked to
either take or leave this offer. Participants were informed that the value of each offer consisted of the sum of each episode that was
described by the offer (e.g. the value of the animal offer would be the sum of the rewards associated with all animals seen during
encoding), and that they should take positive offers and leave negative offers. Participants had 7.5 seconds to make each decision.

4.1.5 Memory Phase

Finally, immediately after the decision task, we assessed participants’ memory for the episodes in two ways. First, participants were
asked to freely recall the items that they saw in each round. They were provided with six empty text boxes and were told to enter the
items in the order in which they remembered them. Participants were further told to halt their recall and move on to the next task if
they could no longer remember any items. Following the free recall portion, participants were shown each item and were asked to
provide their memory for the reward that was associated with each item.

4.1.6 Feature Uncertainty Manipulation: Experiments 3 and 4

In order to determine whether episodic memory is used preferentially when it is unclear which features should be prioritized during
encoding, we manipulated whether information was provided to participants about upcoming choices in experiment 3 and 4. In these
experiments, participants were told either before the encoding phase (4 rounds) or after the distractor phase (4 rounds) that they
would be shown offers of only one feature type (either color or category) during the decision phase. The order in which participants
were shown each condition was counterbalanced.
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4.1.7 Surprise Choice Manipulation: Experiment 4

We aimed to further test whether participants had access to features that were made irrelevant by the feature uncertainty manipulation,
as we predicted that one hallmark of using episodic memory for decision making would be the availability of all of the features of an
event at decision time. To accomplish this, we added a final round to experiment 4 where we surprised participants by telling them
that regardless of whether they had been told they would only be given offers about one feature or not, they would now need to make
decisions about all possible offers.

4.1.8 Participants

All experiments were approved by the New York University Institutional Review Board and all participants provided informed consent
prior to their participation. Participants with normal or corrected-to-normal vision were recruited from the New York University
subject pool. Compensation was provided in the form of course credit. Participants were excluded if they indicated on a post-
task questionnaire that they wrote any information down during the study or if they either failed to answer or provided nonsensical
responses to the post-task questions. To incentive honest responses on this questionnaire, participants were told that they would
receive compensation regardless of their answers.

For Experiment 1 (sample A), 83 participants were recruited and 16 were excluded, leading to a final sample of 67 participants
(Mage = 19.05± 0.15; 23 males, 42 females, 2 declined to say). For Experiment 1 (sample B), 58 participants were recruited and
8 were excluded, leading to a final sample of 50 participants (Mage = 18.76± 0.2; 14 males, 36 females). For Experiment 2, 90
participants were recruited and 15 were excluded, leading to a final sample of 75 participants (Mage = 18.89± 0.17; 17 males, 56
females, 2 declined to say). For Experiment 3 (sample A), 61 participants were recruited and 11 were excluded, leading to a final
sample of 50 participants (Mage = 18.93±0.18; 13 males, 37 females). For Experiment 3 (sample B), 97 participants were recruited
and 13 were excluded, leading to a final sample of 84 participants (Mage = 18.81± 0.14; 25 males, 58 females, 1 declined to say).
For Experiment 4, 139 participants were recruited and 14 were excluded, leading to a final sample of 125 (Mage = 19.14± 0.12;
42 males, 83 females). We recruited a larger sample for Experiment 4 because each participant could complete only one of the
before/after conditions during the final ”surprise” round, and we aimed to have roughly comparable numbers for each condition to
our prior experiments.

4.2 Model Simulations

To illustrate the behaviors that allowed us to distinguish between episodic and feature-based decision strategies, we formalized these
approaches in two toy process models. The episodic model makes decisions by randomly sampling individual memories and their
associated rewards, while the feature-based model precomputes feature-level values during encoding.

For the episodic model, decisions are made by sequentially sampling individual episodes without replacement. Each retrieved episode
consists of both the item and its associated reward, with gaussian noise σ added to the remembered reward to model noisy recall. The
model takes a fixed amount of time φ to recall each memory. Memory retrieval continues until either: (1) all memories for the round
have been retrieved, (2) a time limit is reached, or (3) the model decides to stop retrieving with probability pstop after each recall. To
make a choice, the model sums the recalled rewards of all retrieved items that match the current offer’s feature (e.g., all recalled red
items for an offer about red things). The model then takes the offer if this decision variable is positive and leaves it if it is negative.
Lastly, we also included a fixed non-retrieval time, ρ, which is added to the total response time for each decision.

In contrast, the feature-based model precomputes the value of each feature during encoding by summing the rewards associated with
all items sharing that feature. During the decision phase, the model simply retrieves the cached value for the offered feature and
makes a choice according to a logistic choice rule with inverse temperature β. This strategy predicts constant decision times based
on only on a non-retrieval time ρ since only a single cached value must be referenced on each choice.

The models were simulated on the same task structure used with human participants (Figure 1C). We ran 1000 simulations for each
model with the following values of each parameter. For the episodic model these were: non-retrieval time ρ = 1.5s, recall time
φ = 0.5s, reward recall noise σ = 0.5, stopping probability pstop = 0.1, and a maximum decision time of 7.5s. For the feature-based
model these were: non-retrieval time ρ = 1.5s and inverse temperature β = 5.0.

4.3 Statistical Analysis

All data was analyzed with regression models estimated using hierarchical Bayesian inference such that group-level priors were used
to regularize subject-level estimates unless otherwise specified. Predictors were specified as fixed effects alongside random slopes
and intercepts that were allowed to vary across subjects. In experiments 3A, 3B, and 4, parameter estimates for rounds completed
in either the Before or After conditions were fit separately. The joint posterior was approximated using No-U-Turn Sampling as
implemented in stan69. Four chains with 2000 samples (1000 discarded as burn-in) were run for a total of 4000 posterior samples per
model. Chain convergence was determined by ensuring that the Gelman-Rubin statistic R was close to 1. Default weakly-informative
priors implemented in the brms package were used for each regression model70. For all models, fixed effects are reported in the
text as the mean of each parameter’s marginal posterior distribution alongside 95% highest density intervals (HDIs), and are shown
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in figures as 95%, 80%, and 50% HDIs, which each indicate where that percentage of the posterior density falls. Parameter values
outside of these ranges are unlikely given the model, data, and priors.

4.3.1 Response Time Analysis

To examine how the number of recalled memories impacted the amount of time it took participants to make their choices, we used a
linear mixed-effects model to predict trial-wise response times. Response times were modeled using a shifted lognormal distribution,
which accounts for the positive skew typical of response times. We included both random intercepts and slopes for participants to
account for individual differences in both baseline response speed and sensitivity to the number of memories recalled. The model
can be written as:

RTi j ∼ Shi f tedLogNormal(µi j,σ,θ)

µi j = β0 +β1nMemoriesi j +u0 j +u1 jnMemoriesi j

where i indexes trials and j indexes participants. The parameters u0 j and u1 j represent the random intercepts and slopes for each
participant, σ is the scale parameter, and θ is the shift parameter of the distribution. The number of memories participants recalled in
each round (nMemoriesi j) was included as a continuous predictor. We further conducted a separate analysis of the number of offer-
relevant memories that participants recalled in each round, which consisted of an identical model but with this predictor instead.

4.3.2 Decision Analysis

To analyze the extent to which decision-relevant variables influence participants choices, we fit two mixed-effects logistic regression
models. Binary choices (1 = offer taken, 0 = offer rejected) were predicted by either an offer’s true value or its recalled value. The
true value of an offer (TrueValuei j) was just the sum of all offer-relevant items that were shown to the participants. In contrast,
we computed the recalled offer value (RecalledValuei j) as the sum over the reward that was remembered for each offer-relevant
item that was also recalled during the free recall phase. These predictors were z-scored prior to model fitting in order to facilitate
comparison between them. Each model included random intercepts and slopes to account for individual differences in both baseline
offer acceptance rates and value sensitivity. These models can be written as:

Choicei j ∼ Bernoulli(pi j)

logit(pi j) = β0 +β1TrueValuei j +u0 j +u1 jTrueValuei j

logit(pi j) = β0 +β1RecalledValuei j +u0 j +u1 jRecalledValuei j

To determine the extent to which either recalled offer value or true offer value best predicted choices, we compared models fit using
either predictor. Specifically, model fit was assessed by separating the data into 10-folds and cross validating. The expected log
pointwise predictive density (ELPD) was then computed by summing the log likelihood for each held out datapoint and then used as
a measure of out-of-sample predictive fit for each model, where higher ELPD values suggest better model fit, as they indicate a higher
likelihood of accurately predicting new data. To compare models, we then subtracted the pointwise ELPD estimates and calculated
the standard error of this difference to quantify uncertainty of the comparison30,71.

Lastly, we assessed overall task performance using a separate mixed-effects logistic regression model. The model included only fixed
and random intercepts to assess whether accuracy (1 = correct, 0 = incorrect) was from different from chance-level performance (0.5).
The model was simply:

Correcti j ∼ Bernoulli(pi j)

logit(pi j) = β0 +u0 j

4.3.3 Surprise Round Analysis

In experiment four, we also assessed performance on the final ”surprise” round where participants were required to make decisions
about the offers that they expected (in the before condition) as well as for offers that were unexpected (in both conditions). To do
so, we calculated a ∆Performance score for each participant, which consisted of taking their difference in accuracy on the final round
relative to their average accuracy on previous rounds (previous rounds accuracy - last round accuracy). We calculated this score
separately for expected and unexpected offers in each condition, and then used ∆Performance as the outcome variable in separate
simple linear regression models:

∆Per f ormance j ∼ Normal(µ,σ)
µ = β0

4.3.4 Memory Analysis

We assessed performance on each part of the memory phase using two complementary models. First we examined participants’
overall recall rates, which we defined as the proportion of items they accurately recalled relative to all of the items they were
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shown. We compared these recall rates to chance performance, which we defined as the probability of correctly guessing items when
randomly selecting 6 items from the pool of 16 possible items that could be shown on a given round, which was 37.5% (or 6/16).
For each participant, we computed the difference between their mean recall rate and chance (Recall j), and then fit a simple linear
regression model to these difference scores:

Recall j ∼ Normal(β0,σ)

Next, to assess the accuracy of participants’ memory for the reward associated with successfully recalled items, we fit a mixed-
effects linear regression model predicting participants’ remembered rewards from the true associated rewards. Both remembered
(RememberedRewardi j) and true (TrueRewardi j) rewards were normalized by dividing by the maximum absolute value in the dataset.
The model included random intercepts and slopes for participants to account for individual differences in both baseline memory and
value sensitivity:

RememberedRewardi j ∼ Normal(µi j,σ)

µi j = β0 +β1TrueRewardi j +u0 j +u1 jTrueRewardi j

4.4 Data Availability

The data is available online at https://github.com/jonathanicholas/nm2025_emdm

4.5 Code Availability

The code is available online at https://github.com/jonathanicholas/nm2025_emdm
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6 Supplementary Information

Experiment Sample Condition β 50% HDI 80% HDI 95% HDI
1 A - -0.07 [-0.08, -0.06] [-0.09, -0.05] [-0.10, -0.04]

B - -0.03 [-0.04, -0.01] [-0.06, 0.01] [-0.08, 0.03]
2 - - -0.01 [-0.02, 0.0003] [-0.03, 0.01] [-0.04, 0.02]
3 A Before -0.07 [-0.11, -0.03] [-0.15, 0.002] [-0.19, 0.04]

After 0.03 [-0.002, 0.06] [-0.03, 0.09] [-0.06, 0.13]
B Before -0.07 [-0.09, -0.05] [-0.11, -0.02] [-0.14, 0.001]

After -0.05 [-0.08, -0.03] [-0.10, -0.01] [-0.13, 0.02]
4 - Before -0.10 [-0.13, -0.07] [-0.16, -0.04] [-0.20, -0.005]

After -0.03 [-0.05, 0.001] [-0.07, 0.02] [-0.10, 0.05]

Table S1: Fixed effects estimates from regression models predicting choice response times from the number of offer-relevant memo-
ries recalled by each participant rather than the total number of memories recalled in each round, as reported in the main text.
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Experiment Sample Condition Model ELPD ± SE
1 A - True -877.00 ± 13.25

Recalled -857.59 ± 14.32
B - True -355.79 ± 8.35

Recalled -342.21 ± 8.54
2 - - True -1062.25 ± 13.27

Recalled -1040.77 ± 14.37
3 A Before True -240.82 ± 9.32

Recalled -245.56 ± 8.90
After True -256.41 ± 6.68

Recalled -243.09 ± 7.56
B Before True -446.73 ± 13.33

Recalled -434.47 ± 13.31
After True -485.72 ± 10.55

Recalled -441.23 ± 13.01
4 - Before True -182.12 ± 13.12

Recalled -208.66 ± 11.29
After True -221.67 ± 6.70

Recalled -220.33 ± 7.49

Table S2: Expected log posterior density resulting from 10-fold cross validation for each choice model in all experiments.
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Measure Value 95% HDI
Choice Accuracy 62.4% ± 1.3 -
Choice Model Intercept (β0) 0.45 [0.34, 0.55]
Response Time Slope (βnMemories) 0.06 [0.02, 0.09]
True Offer Value Slope (βtrue) 0.64 [0.49, 0.79]
Recalled Offer Value Slope (βrecalled) 0.80 [0.63, 0.96]
Choice Model Comparison (ELPDrecalled−true) 21.48 ± 13.93 -
Memory Recall Rate 60.6% ± 2.4 -
Memory Recall Model Intercept (β0) 0.23 [0.18, 0.28]
Reward Memory Slope (βreward) 0.53 [0.47, 0.60]

Table S3: Results of Experiment 2. Choice Accuracy shows mean percentage of correct choices (± standard error). Response Time
shows the relationship between decision time and number of memories recalled. Choice Model Comparison shows the difference
in ELPD between recalled and true offer value models. Memory measures show free recall performance and accuracy of reward
memory.
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Experiment 2


Figure S1: The full set of stimuli used in experiment two, which differed along four dimensions: pattern (solid or patterned), location
(land or sea), animacy (animal or object), and size (small or large). Six images were again sampled to be shown in each round (with
an example in red).
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Figure S2: Lag-conditional response probability (CRP) curves demonstrating the classic contiguity effect (in which items encoded
closer in time to one another are recalled more closely together in time31) in free recall data for experiments one and two (A) and
experiments three and four (B). Lines represent group-level averages and bands represent 95% CIs.
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Figure S3: Participants’ remembered reward reported for each item during the reward memory portion of the memory phase for
experiments one and two (A) and experiments three and four (B). The remembered reward for each item is plotted as a function of
the item’s true associated reward. Large lines represent the group-level fit of a mixed-effects regression, with individual subject fits
plotted as smaller lines. Points represent group-level averages with standard error. Inlays show fixed and random effects, where boxes
represent the fixed effects posterior distribution with horizontal lines representing the mean and boxes representing 50%, 80%, and
95% HDIs. Points represent random effects slopes for each subject.
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