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Our experiences contain countless details that may be importantin
the future, yet we rarely know which will matter and which will not. This
uncertainty poses a difficult challenge for adaptive decision-making, as

failing to preserve relevant information can prevent us from making good
choiceslater on. One solution to this challenge is to store detailed memories
ofindividual experiences that can be flexibly accessed whenever their
details become relevant. By allowing us to store and recall specific events
invivid detail, the human episodic memory system provides exactly this
capacity. Yet, whether and how this ability supports adaptive behaviour

is poorly understood. Here we aimed to determine whether people use
detailed episodic memories to make decisions when future task demands
are uncertain. We hypothesized that the episodic memory system’s ability
to store eventsin great detail allows us to reference any of these details
ifthey later become relevant. We tested this hypothesis using anovel
decision-making task in which participants encoded individual events
with multiple features and later made decisions based on these features
to maximize their earnings. Across 5 experiments (total n = 535), we

found that participants referenced episodic memories during decisions
infeature-rich environments and that they did so specifically when it

was unclear at encoding which features would be needed in the future.
Overall, these findings reveal afundamental adaptive function of episodic
memory, showing how its rich representational capacity enables flexible
decision-making under uncertainty.

Humans possess the remarkable capacity to remember individual
events from the past in high fidelity using our episodic memory
system'”. From merely a single exposure, we can recall complex expe-
riences consisting of many different details—the taste of a meal, the
layout of a restaurant, the conversation around a dinner table—even
whenitis unclear whether we will actually ever need any of this informa-
tionagain. Why do we maintain such detailed memories of past events?

One possible answer is that this ability is adaptive, because the
aspects of anexperience that will be relevant for future behaviour are
rarely apparent when they are first encountered. For instance, when
deciding whether to visit a restaurant, you may need to recall details
that were not previously important during your prior meals there,

such as whether the menu can accommodate your vegan friend or if
the ambiance is appropriate for a work meeting. By storing detailed
representations of past experiences, our episodic memory system
can allow us to access any of these details if they ever become rel-
evant in the future. In this way, episodic memory may enable flex-
ible decision-making by allowing us to repurpose our memories for
novel goals.

Despite a long history of work on the adaptive role of episodic
memory’> ¢, computational research has only recently started to charac-
terize the advantages it can provide for decision-making’°. Akey theme
in this work is that the episodic memory system is poised to address
several shortcomings faced by other forms of memory, particularly
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Fig.1| Task design. a, The four phases completed by participantsin each round
ofthe task used in experiments 1-4. In the first part of a round, participants
completed an encoding phase that allowed them to encode individual items

and anassociated reward (an episode). Immediately after viewing the episode,
participants completed an attention check consisting of the item alongside

two options, either the associated reward that was just shown or another
randomly selected reward. Participants completed six trials per round. Following
encoding, participants then completed a 90-s distractor task consisting of a
two-back working memory task. This was designed to prevent active rehearsal
ofthe episodes. Following the distractor, participants completed a decision
phase in which they were shown offers consisting of a single feature and were
asked to either take or leave this offer. The value of each offer was the sum of all
episodes described by the offer. Lastly, after the decision phase, participants
completed a subsequent memory test consisting of two tasks. They were first
asked to freely recall each of the items they had seen in the round. They were then
shown eachitem and asked to provide the reward that was associated with each
item. Participants completed between five and nine rounds, depending on the
experiment. b, The full set of stimuli shown to participantsin experiments1,3
and 4. Stimuli differed along two dimensions: colour and category. A subset of
siximages were sampled from these to be shown in each round (with an example
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showninred). See Supplementary Fig.1for the stimuli used in experiment 2.

¢, Simulated choice behaviour on the decision phase from two toy process
modelsimplementing either an episodic or feature-based decision strategy

(see Methods for details). During each offer, the episodic model randomly
samples individual items and their associated reward without replacement. To
make choices, it then sums up the recalled rewards associated with all recalled
offer-relevantitems that match the offer, and then chooses to either take or leave
each offer depending on whether this decision variable was positive or negative,
respectively. This strategy leads to longer decisions when more memories have
beenretrieved (top). Its decision variable (the recalled offer value) also differs
from the true offer value due to the items and associated rewards that the model
actually recalls on each decision (bottom) and can be used to more strongly
predict choices. By contrast, the feature-based model instead sums up the value
of rewards associated with each feature at encoding time and chooses with some
noise at decision time, leading to neither of these predictions. d, The feature
uncertainty manipulation used in experiments 3 and 4. On half of the rounds,
participants were informed either before or after encoding about which type

of offer they would be given in the future. For experiment 3, the screen showed
either colour or category offers, and for experiment 4, it showed a specific
instance of either colour or category (for example, red, blue, object and so on).

incremental learning, which aids decision-making by allowing us to
gradually estimate the value of different choice options over many
repeated encounters'®®. Importantly, incremental learning suffers
from a well-known problem called the curse of dimensionality, which
arises because computational and memory demands rapidly scale
with the richness of what must be learned”. For instance, when learn-
ing about choice options with multiple features, an agent capable of
only incremental learning would need to track and update values for
eachindependently.

One way humans may circumvent thisissue is by selectively learn-
ingabout only the mostrelevant features of experience whileignoring
information about the rest'®. Using selective attention in this way can
allow for efficient decisions in high-dimensional environments—when
afeature is deemed relevant, its value is tracked and incrementally
updated, requiring only asimple retrieval at choice time. Such a strat-
egyishighly effective under circumstances in which feature relevance
canbereliably inferred, and people probably employ it when this is the
case'?°. But environments like this are, in reality, rare. Furthermore,
augmenting incremental learning with selective attention enforces
rigidity, ultimately harming future choices that may depend on fea-
tures that were initially ignored. There are also fundamental limits to
the number of features that can be reasonably attended to and tracked
simultaneously”, making this strategy increasingly impractical in
the real world. These limitations are precisely the types of problems
that episodic memory’s detailed representations are best equipped
to address.

A separate but related challenge is that incremental learning is
most successful when experiences are repeated, yet actual experi-
ences are unlikely tobe encountered more than asingle time. Episodic
memory, by contrast, allows us toencode and retrieve individual expe-
riences, making it naturally suited to real-world environments where
experiencesrarely repeat®. Indeed, this capacity for one-shot learning
has dominated research on episodic memory’srole in decision-making,
where much work has demonstrated that humans can effectively
guide their decisions by retrieving and leveraging individual past
experiences” 7. Yet, despite this progress, whether the episodic mem-
ory system’s ability to encode detailed experiences provides its own
advantages for decision-making remainslargely unknown. Our primary
goal was to address this gap.

Here we hypothesized that (1) people use episodic memory to
access details from past events for decision-makingin feature-rich envi-
ronments, and that (2) this strategy enables flexibility whenit is unclear
which details will be needed in the future. To directly test these ideas,
we developed a decision-making task in which participants were asked
to encode individual episodes consisting of items that varied across
multiple features (for example, colour and category) and an associated
reward (Fig. 1a,b). After encoding these episodes, participants made
value-based decisions in which they were shown offers consisting of
specific features (for example, red or animal) and were then asked to
either take or leave each offer. To determine the value of these offers,
participants needed to sum the rewards associated with all items that
had the offered feature in common (for example, all red things).
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Importantly, this task could be solved using two different strate-
gies, corresponding to either using episodic memory at choice time (an
episodic strategy) or using incremental learning and selective atten-
tion at initial encoding (a feature-based strategy). To accomplish the
former, participants could use episodic memory to compute an offer’s
value ‘on-the-fly’ during their decisions by retrieving and summing
the rewards associated with each offer-relevant item. Alternatively,
they could instead attend to individual features during encoding and
precompute a sum for each. While the episodic strategy offers more
flexibility because episodes can be repurposed according to present
demands, it comes at the expense of greater computation at choice
time. Likewise, the feature-based strategy may yield more efficient
decisions because it removes the need to reference individual episodes
during decision-making, but sacrifices flexibility. This is one instance
ofabroader trade-off between computational efficiency and flexibility
seenacross learning and decision-making systems in the brain®"*%*°,

We examined the extent to which participants engaged in these
two strategies using several variants of this task across five different
experiments (total n = 535), finding evidence that humans use epi-
sodic memory to flexibly access features of past experience during
decision-making specifically when future task demands are unknown.

Results

Episodic memory allows access to details from past events for
decision-making

Inexperiment 1, we first aimed to test whether people primarily rely on
episodic memory rather than feature-based selective attention when
making decisionsin environments with multiple features. In this experi-
ment, participants completed five rounds, each consisting of four
phases (Fig. 1a,b). Participants first encoded six individual episodes,
where each episode consisted of an item and its associated reward.
This encoding phase was then followed by a brief two-back working
memory task to prevent active rehearsal. Immediately following this
task, participants then made value-based decisions about features of
earlierencoded episodes. At the end of each round, participants were
askedtofirst freely recall allitems they had seeninthat round and then
report eachitem’s associated reward.

We hypothesized that the computational demands of tracking
multiple features simultaneously would make a feature-based strategy
impractical, leading participants to instead use episodic memory to
compute offer values at the time of choice. We tested this hypoth-
esis in two independent samples to ensure the replicability of our
findings. Before addressing our primary question, we first examined
whether participants learned to make effective decisions in the task.
At the group level, participants in both samples tended to take posi-
tive offersand reject negative offers (sample A: M, cyracy = 63.6% + 1.5%,
Bo=0.46, 95% highest-density interval (HDI) 0.33-0.59; sample
B: M, ccuracy = 60.8% = 2.3%, B, = 0.36, 95% HDI 0.17 to 0.55; where M is
the mean, and g, is the regression coefficient), despite substantial
interindividual variability (Fig. 2a). Participants’ choices therefore
reflected their ability to compute the value of each offer by summing
over individual experiences.

Our next goal was to examine whether participants maintained
memory traces for the individual episodes they encoded in the first
part of each round. To accomplish this, our experiment required par-
ticipants to complete an additional memory phase immediately after
the decision-making phase of each round (Fig.1a). Thismemory phase
consisted of two parts in which participants were asked to remember
both elements of the episodes they had seen: they were first asked to
freely recall each of the six items from a round, and then to recall the
reward that was associated with each item. Participants had robust
memory for the individual episodes, remembering between three
and four items, on average (sample A: M,.,; = 63% + 2.5%; sample B:
M1 = 64.7% + 2.8%; Fig. 2b), which was well above chance-level recall
(sample A: 8,=0.26, 95% HDI 0.20 to 0.31; sample B: 8,=0.27, 95%

HDI0.22t0 0.33). Item recalls exhibited classic properties of episodic
memory, with items presented close together during encoding being
morelikely to be recalled consecutively (temporal contiguity effect®;
Supplementary Fig. 2), providing further evidence that participants
engaged episodic memory during the task. Participants also accurately
remembered the rewards associated with eachitem, showing astrong
positive relationship between remembered and actual rewards (sample
A: Browara = 0.52, 95% HDI 0.44 t0 0.59; sample B: B,epara = 0.47, 95% HDI
0.37 to 0.56; Supplementary Fig. 3). These results demonstrate that
participants formed and retained strong memories for each episode
beyond the decision-making phase and that individual memories were
available for potential recall at choice time.

Next, to disambiguate between the episodic and feature-based
strategies, we used participants’ responses on the memory phase
to analyse their choice behaviour. First, we reasoned that recalling
an individual episode should take time*°? and that, accordingly,
the amount of time it takes to make a decision should scale with the
number of episodes that are referenced (Fig. 1c). Importantly, the
feature-based strategy makes nosuch prediction, as only asingleitem
(aprecomputed offer value) must be retrieved at choice time. To test
this idea, we first used participants’ free recall data to determine the
total number of items that they accurately recalled on each round
of the task. We then examined whether they took longer to respond
to offers during rounds on which they recalled more items overall.
As predicted, participants took longer to decide when they subse-
quently recalled more memories (sample A: SBoyemories = 0.05, 95% HDI
0.02to 0.08; sample B: B, vemories = 0-07, 95% HDI 0.03 to 0.11; Fig. 2c).
We next conducted a complementary analysis examining whether
decision response times were specifically related to the number of
offer-relevant memories recalled—that is, only those memories whose
features matched each offer (for example, only recalled red items for
offers about red things). Interestingly, we found no consistent rela-
tionship between response times and the number of offer-relevant
memories recalled (see Supplementary Table 1 for results across all
experiments). Together, these results suggest that participants did not
retrieve exclusively the memories needed for each decision. Rather,
participants broadly retrieved their memories, presumably selecting
fromthem only the trial-relevantinformation before makingachoice.

Having observed response time patterns suggesting that par-
ticipants accessed individual memories during their decisions, we
moved to examine the actual choices they made. We reasoned that
if their decisions were based on the rewards they remembered being
associated with each item, as predicted by an episodic strategy, their
choices should be sensitive to the summed value of these remem-
bered rewards (Fig. 1c). To test this, we used participants’ responses
on the reward memory portion of the memory phase to determine
the recalled value of each offer. Specifically, we summed over the
reported remembered reward of each offer-relevant item that was
also recalled during the free recall phase. By contrast, we expected
that evidence for a feature-based strategy would manifest as choices
being primarily driven by the true value of each offer, independent
of what participants explicitly remembered. This prediction follows
from the nature of feature-based learning:if participants precomputed
feature values during encoding, these cached values would beimmune
to later forgetting or distortions of individual episodes. To arbitrate
between these possibilities, we fitted two logistic regression models
to participants’ choices: one that used the true offer value to predict
each choice, and another that used recalled offer value to predicteach
choice. We then compared the out-of-sample predictive accuracy of
each model using cross-validation.

While participants’ choices were sensitive to both true offer value
(sample A: Bre = 0.73,95% HDI 0.56 to 0.91; sample B: S, = 0.61, 95%
HDI0.32t00.92) and recalled offer value (sample A: B,ccajieq = 0.89, 95%
HDI0.69 to1.11; sample B: B..caieq = 0.83, 95% HDI 0.55 to 1.15), recalled
offer value was slightly more effective at predicting held-out choices
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Fig. 2| People use episodic memory to make decisions in multifeature
environments. a, Participants’ overall choice accuracy during the decision phase,
shown for experiment 1 (samples A and B) and experiment 2. Chance performance
isrepresented by the horizontal line. Large points represent group-level averages,
witherror bars representing the standard error of the mean. Small points
represent average choice accuracy for individual participants. b, Participants’ rate
ofaccurately recalling items seen in each round during the free recall portion of
the memory phase. Recall rates were defined as the proportion of items that were
accurately recalled relative to all items that were shown. Chance performance is
represented by the horizontal line. Large points represent group-level averages,
witherror bars representing the standard error of the mean. Small points
represent average recall rates for individual participants. ¢, Participants’ decision
response times (log transformed) as a function of the number of memories that
they accurately recalled on each round. Large lines represent group-level fits of a
mixed-effects linear regression model, with fits to individuals plotted as smaller
lines. Points represent group-level averages with uncertainty represented as
standard error of the mean. Far right: fixed-effects and random-effects slopes ()
for regression model fits. Boxes represent the fixed-effects posterior distribution,

with horizontal central lines representing the mean and boxes representing
50%,80% and 95% HDIs. Points represented the random-effects slopes for each
participant. d, Left: the proportion of offers that were taken as a function of
summed true offer value and recalled offer value. Offer values are z-scored to
facilitate comparison. Points display raw choices, where O indicates aleave
response and lindicates a take response. Inlays show the mixed effects slopes for
each predictor, where boxes represent the fixed-effects posterior distribution
with horizontal central lines representing the mean and boxes representing 50%,
80%and 95% HDIs. Individual points in the inlays represent random slopes for
each participant. Far right: results of comparing the true and recalled offer value
models. Model fit was first assessed using tenfold cross-validation. The ELPD was
then computed. Higher ELPD values indicate a higher likelihood of accurately
predicting new data. Here, the difference in ELPD between modelsis shown

such that positive values provide more support for the recalled offer value
model. Uncertainty in the comparisonis computed as inref. 72, with error

bars shown as the standard error of the difference. Statistics in all figures were
computed with n =67 (experiment1, sample A), n = 50 (experiment 1, sample B)
andn =75 (experiment 2).

inbothsamples (sample A:expected log pointwise predictive density
(ELPD)ccaed-irue 21.00 £ 15.63, sample B: ELPD, caeq-irue 13.58 % 9.30;
Fig. 2d and Supplementary Table 2). This result indicates that par-
ticipants tended to rely more heavily on the information contained in
individual episodes, namely the identity and value of items, to make
their decisions.

One limitation of this experiment is that it does not distinguish
between two fundamentally different ways thatinformation could be
represented in memory. One possibility, which we have suggested so
far, is that experiences are stored as integrated episodes, where mul-
tiple features are bound together into asingle conjunctive representa-
tion (for example, ‘butterfly’)*>**. Alternatively, individual experiences
could be stored as separate features (for example, ‘blue’ and ‘animal’
asindependent elements)®. Although both approaches could support
value computation in our task, the latter becomes increasingly chal-
lenging as more features must be maintained and retrieved. To test this
idea, we conducted a second experiment that was nearly identical to
experiment1, but where we doubled the number of features associated
with each stimulus (see Table 3 for asummary of differences between
these experiments and Supplementary Fig. 1 for all stimuli used in

this experiment). Specifically, in this experiment the stimuli varied
across four binary features: texture (solid or pattern), location (land or
sea), animacy (animal or object) and size (small or large). Offers then
consisted of one of the feature levels (for example, solid or sea) where
the value of each offer was the sum of all stimuli that had the offered
feature level in common (for example, all solid things).

We reasoned that, if participants relied upon memories com-
prised of separate features, this increased complexity would impair
performance. Conversely, if participants encoded integrated epi-
sodes, the natural binding of features should preserve performance
despite the additional complexity. As predicted, performance on
experiment 2 was comparable to experiment 1 and all results repli-
cated (Fig.2 and Supplementary Table 3), supporting the conclusion
that participants relied on integrated episodic memories rather
than separate feature memories to complete the task. To formally
assess replicability, we pooled data across experiments 1and 2 and
tested for sample-specific deviations from the overall effects. No
deviations from the pooled effects were observed across any sample
(Supplementary Table 4), providing strong evidence for the reliability
of these effects.
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Fig.3|Episodic memory is primarily used for decisions whenitis unclear
what features are important. a, Participants’ choice accuracy during the
decision phase, shown for experiment 3 (samples A and B). Decisions made when
the future relevance of features was known at encoding (the before condition, in
blue) are shown separately from those made when this information was unknown
atencoding (the after condition, in orange). Large points represent group-

level averages, with error bars representing the standard error of the mean.
Small points represent average choice accuracy for individual participants.

b, Participants’ decision response times (log transformed) as a function of

the number of memories they accurately recalled on each round for sample

A (top) and sample B (bottom). Left: large lines represent the group-level fit

of amixed-effects regression, with fits to individuals plotted as smaller lines.
Points represent group-level averages with standard error of the mean. Right:
fixed-effects slopes and random-effects slopes (8) for regression model fits.
Boxes represent the fixed-effects posterior distribution, with horizontal lines
representing the mean and boxes representing 50%, 80% and 95% HDIs. Points
represent random-effects slopes for each participant. ¢, The relationship

between choices and offer value for sample A (top) and sample B (bottom). Left:
the proportion of offers taken as a function of summed true offer value and
recalled offer value for the before and after conditions. Offer values are z-scored
to facilitate comparison. Points display raw choices, where O indicates a leave
response and lindicates a take response. Inlays show the mixed-effects slopes for
each predictor, where boxes represent the fixed-effects posterior distribution,
with horizontal central lines representing the mean and boxes representing 50%,
80% and 95% HDIs. Individual points in the inlays represent random slopes for
each participant. Right: model comparison showing the difference in ELPD, with
error bars representing the standard error of this difference. d, Participants’ rate
ofaccurately recalling items seen in each round during the free recall portion

of the memory phase. Chance performance is represented by the horizontal

line. Large points represent group-level averages, with error bars representing
the standard error of the mean. Small points represent average recall rates

for individual participants. Statistics in all figures were computed with n =50
(experiment 3, sample A) and n = 84 (experiment 3, sample B).

Together, these results demonstrate that, when faced with choices
that could be based on many different features, participants primarily
used an episodicstrategy thatinvolved retrieving and computing over
individualmemories at choice time. This finding suggests that, despite
theincreased computational demands during decision-making, people
prefer to maintain detailed episodic memories that can be flexibly
accessedrather thanattemptingto trackand update values for multiple
features simultaneously. This preference may reflect the difficulty of
implementing a feature-based strategy when faced with the curse of
dimensionality, as suggested by previous theoretical work®.

Episodic memory enables flexible decision-making when it is
unclear which details are important

Our findings so far demonstrate that people rely on episodic memory to
make decisions in multifeature environments, in part because episodic
memories provide a natural solution to the curse of dimensionality.
However, this observation alone does not fully explain why episodic
memory might be specifically advantageous for decision-making. To
address this, we next hypothesized that episodic memory’s key benefit
liesinits ability to enable flexible decisions when future task demands
are uncertain—a common situation in the real world. This hypothesis
predicts that people should shift away from using episodic memory
when they can anticipate which features will be relevant for their
upcoming decisions, as this foreknowledge would make a feature-based
strategy more viable. To test this prediction directly, we next conducted

an experiment where we manipulated whether participants knew in
advance which features would be relevant for their decisions.

Inexperiment 3, we contrasted two conditions: one where partici-
pantslearned which features would be relevant only at choice time (after
encoding), and another where participants knew before encoding which
features would be needed for their upcoming decisions (Fig. 1c). Specifi-
cally, inthis new before condition, participants were told before encod-
ing thatthey would later receive offers about colour or category, but not
both. This manipulation created conditions where the feature-based
strategy is more feasible, as participants could safely ignore irrelevant
features (forexample, category when only colour offers would be made).
This advantage was absent in the after condition, where feature rel-
evance remained uncertain during encoding. We predicted that people
would primarily rely onan episodic strategy in the after condition, but
would shift towards afeature-based strategy when feature relevance was
knowninadvance. We again tested this prediction across two independ-
ent samples to ensure the replicability of our findings.

Participants responded accurately, primarily taking positive and
leaving negative offers both during rounds in which feature relevance
was communicated before encoding (sample A: M= 68.5% +2.9%,
Bo=0.86,95% HDI 0.62 to 1.33; sample B: M= 71.7% + 1.9%, B, = 1.00,
95% HDI 0.81to 1.21) and after encoding (sample A: M =59.7% + 2.9%,
Bo=0.43,95%HDI1 0.20 to 0.66; sample B: M = 63.3% +2.2%, ,= 0.62,
95% HDI 0.41to 0.83; Fig. 3a). Notably, participants chose more accu-
rately in the before condition (by an average of 8.8% and 8.4% in each
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sample, respectively), suggesting that there were clear benefits to
performance when feature relevance was known during encoding.
Importantly, however, performance in the after condition was on par
with our prior experiments.

We nextaimed to test our primary hypothesis. As predicted, in the
after condition, participants took longer to make decisions when they
recalled more memories (sample A: B, yemories = 0-08, 95% HDI 0.04 to
0.12; sample B: B yemories = 0.06, 95% HDI 0.02 to 0.11; Fig. 3b). Yet, we
found little evidence for this relationship in the before condition, when
participants were aware of which features they would need for their
future decisions (sample A: S vemories = 0.02, 95% HDI -0.04 to 0.07;
Sample B: B yemories = 0-03, 95% HDI —0.01 to 0.07). We then further
examined the extent to which true and recalled offer value predicted
participants’ choices in both conditions. We expected recalled offer
value tobe abetter predictor of choices in the after condition, but not
inthe before condition, if participants retrieved episodes during deci-
sions made inthe former but not the latter. Inline with this prediction,
recalled offer value better predicted held-out choicesin the after condi-
tionbut notinthe before conditionin both samples (Fig.3cand Table 1;
see Supplementary Table 2 for the performance of all models). In mod-
elspoolingacross samples, we further assessed the interaction between
these conditions, finding evidence for a greater effect of recalled
memories on decision times in the after condition relative to the
before condition (B.memoriesxcondition = 0-07, 95% HDI 0.04 to 0.10;
Supplementary Table 5). Consistent with this finding, recalled offer
value also provided comparably better predictions of held-out choices
(BELPD,ecateq_irue xCondition = 0.06, 95% HDI 0.03 to 0.10). These results
indicate that participants primarily referenced individual episodes
during decision-making whenit was unclear at encoding which features
would be needed for future decisions.

To better understand the source of these differences in strategy
recruitment, we next examined participants’ performance on the
memory phase. Specifically, while participants shifted away from
using episodic memory when feature relevance was known before
decision-making, it is unclear whether this effect emerged from
changes in how experiences were initially encoded or from whether
they were later accessed during decision-making. We reasoned that,
if participants strategically modified their encoding based on known
featurerelevance, they should showimpaired subsequent memory for
individual episodes in the before condition, as they would be focused
primarily on computing and maintaining feature-level values rather
than encoding complete episodic memories. However, another pos-
sibility is that participants instead continued to encode episodic
memories alongside precomputing feature values, consistent with
evidence that these distinct systems often operate in parallel during
learning®*°38 In this case, we expected to see comparable memory
performance between conditions, with task demands influencing
whether these memories were later accessed at choice time rather than
whether they were initially stored.

Across both samples, we found that participants maintained strong
memories of the episodes encountered in each round regardless of
condition. Participants accurately recalled individual items with no dif*-
ferencesinrecallrates between conditions (sample A: B,¢er-before = —0.01,
95%HDI—-0.10t0 0.08; sample B: B, ser-berore = —0-01, 95% HDI-0.07 to 0.06;
Fig. 3d and Table 2), and they further showed equally similar memory
for the rewards associated with each item (sample A: S, ser-before = —0.06,
95% HDI -0.18 to 0.06; sample B: ,¢cr_petore = —0.05, 95% HDI -0.15 to
0.05; Table 2 and Supplementary Fig. 3). These findings demonstrate
that participants encoded complete episodic memories regardless of
whether they knew which features would be relevant for future decisions.

Together, these results provide evidence that people selectively
use episodic memory for decision-making when feature relevance is
unknown during encoding. When participants were aware of which
features would beimportant for decision-making before encoding, our
results suggested that they no longer retrieved individual memories

Table 1| Experiment 3 model comparison results showing
fixed-effects estimates (8) with 95% HDIs and difference in
ELPD between true and recalled offer value models

Condition Sample Model B(95% HDI) ELPD,. .icd-true £
standard error
True 117 =474 £10.22
(0.76-1.65)
A
Recalled 1.02
(0.77-1.31)
Before
True 117 12.26 +14.50
(0.92-1.46)
B
Recalled 1.27
(1.02-1.55)
True 0.63 13.32+7.96
(0.31-0.99)
A
Recalled 0.91
(0.58-1.28)
After
True 0.79 4450 +14.13
(0.54-1.06)
B
Recalled 1.29
(1.03-1.59)

at choice time. This shift towards the feature-based strategy is sensi-
ble—it reduces computational demands at decision time by allowing
directaccessto precomputed feature values rather thanrequiring the
retrieval and integration of multiple episodic memories. This approach
led toimproved performance on expected decisions because the epi-
sodic strategy can introduce noise (for example, through errors in
memory retrieval), especially under time constraints when only a
subset of memories might be accessible. Yet, we also found that par-
ticipants maintained detailed episodic memories in both conditions,
suggesting that the differences we observed during decision-making
emerged from how information was accessed at choice time rather than
how itwasinitially encoded. We next aimed to determine whether this
parallel maintenance of episodic memories provided its own adaptive
benefits for decision-making.

Episodic memory maintains access to details if they become
unexpectedly relevant
Theresults of experiment 3 suggest that, while participants appeared
torely onafeature-based strategy when feature relevance was knownin
advance, they still maintained detailed episodic memories. One predic-
tionthat follows from this observation is that participants should still
be able to use their episodic memories to maintain access to features
they hadinitially deemedirrelevantin order toinformtheir decisions.
By contrast, if participants abandoned episodic encoding entirely, they
should struggle to accessinformation about these irrelevant features.
We designed a fourth experiment to test this idea. In experiment
4, after participants completed eight rounds in which the manipula-
tion introduced in experiment 3 was implemented, they were asked
to complete an additional final round in which all possible offers were
presented. Importantly, participants were shown these unexpected
offers regardless of whether they had been told before the encoding
phase of this final round that they would see only a subset of offers
later on. This allowed us to examine performance when the final round
was completed under the before condition for both expected and
unexpected offers. By definition, all offers shown during the after
condition were unexpected. We additionally modified the task to create
conditions that would encourage greater reliance on the feature-based
strategy. To accomplish this, we simplified the decision phase by pre-
senting only a single offer type per round (for example, ‘red’) before
thefinal round. This modification meant that participantsin the before
condition needed to track only one specific feature value rather than
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Table 2| Memory performance across experiments 3 and 4

Experiment Sample Condition Recallrate S, Breward
+standard (95% HDI) (95% HDI)
error

Before 51.8%+3.2% 014 0.55
(0.08-0.21)  (0.48-0.62)
A
After 511%+2.9% 014 0.49
(0.08-0.19) (0.39-0.57)
3
Before 61.8%+2.2% 0.24 0.53
(0.20-0.29) (0.46-0.60)
B
After 61.2%+2.3% 0.24 0.48
(019-0.28)  (0.41-0.55)
Before 62.5%+1.9% 0.25 0.54
(0.21-0.29) (0.49-0.59)
4 -
After 61.9%+19% 0.23 0.48
(019-0.27)  (0.42-0.54)

Recall rate shows the mean percentage of items recalled (+ standard error). 3, represents the
intercept of a model predicting recall performance relative to chance. B.eyaq represents the
slope of a model predicting the relationship between remembered and actual rewards.

multipleinstances of the same feature (for example, just ‘red’ instead of
all colours), making the feature-based strategy exceptionally efficient.
We predicted that this change would lead participants to rely more
heavily on the feature-based strategy in the before condition relative
toexperiment 3.

We further predicted that participants should show a specific
patternof choice behaviour if they maintained access to their episodic
memories despite this increased commitment to the feature-based
strategy. First, in response to unexpected final round offers completed
under the before condition, we predicted that participants’ accuracy
should drop relative to their performance on previous rounds. This
is because they would no longer be able to rely on the feature-based
strategy, which provided clear benefits to performance (improving
accuracy by 8-9% in experiment 3 when feature relevance was known
in advance). Second, we predicted that, to make these unexpected
decisions, participants would instead need to fall back on using their
episodic memories, leading to accuracy levels similar to their perfor-
mance in the after condition.

We first examined overall performance on rounds before the final
round, finding that, while participants responded accurately in both
conditions (before: M=78.4% +2.0%, ,=1.57,95% HDI11.29 t0 1.90;
after: M=55.2% + 2.2%, B, = 0.52, 95% HDI 0.32 to 0.74; Fig. 4a), they
performed substantially better in the before conditionrelative toboth
samplesin experiment three. Participants further showed equivalent
memory performance across both conditions, with no differences
in recall rates (B,ser—pefore = —0.02, 95% HDI —0.07 to 0.04; Fig. 4b and
Table 2) or in memory for associated rewards (B,¢er-before = —0.06, 95%
HDI -0.14 to 0.02; Table 2 and Supplementary Fig. 3). These results
suggest that, although participants were more capable at deciding
in the before condition when they had to compute only the value of
asingle feature, they still separately maintained episodic memories.

We next asked whether thisincrease in performancein the before
conditionwas dueto participants’ greater reliance on the feature-based
strategy. In line with this interpretation, we found that during the
before condition there was virtually no evidence of a positive rela-
tionship between the number of memories recalled and decision
response times (B, vemories = —0-02, 95% HDI —0.07 to 0.02; Fig. 4¢),
and participants’ choices were better predicted by the true offer
value (B =2.74, 95% HDI 2.03 to 3.65) than the recalled offer value
(Brecatioa = 2.04, 95% HDI1.49 t0 2.75, ELPD, . cajjeq-irue —26.54 + 12.69; Fig. 4d
and Supplementary Table 2). Formal comparisons confirmed that, rela-
tive to experiment 3, in experiment 4 there was a weaker relationship
between the number of recalled memories and response times in the
before condition (8, =-0.05, 95% HDI -0.11 to —-0.006), and the true

offer value also exerted astronger effect on choice (8, = 0.68,95% HDI
0.381t00.99). By contrast, in the after condition, participants showed
longer decision response times when more memories were recalled
(Bamemories = 0.09, 95% HDI 0.05 to 0.12). While participants’ choices in
this condition were numerically more sensitive to the recalled offer
value (B,ccaed = 0.90, 95% HDI 0.59 to 1.27) than the true offer value
(Birwe = 0.79,95% HDI 0.52 to 1.10), both models were equally capable
of predicting held-out choices (ELPD . yjed-true 1.33 + 6.97; Fig. 4d). This
equivalent model performance probably reflects the limited data avail-
ablefor cross-validation, as participants made substantially fewer deci-
sions per condition in this experiment compared with experiment 3.

Finally, we turned to test the primary question of this experi-
ment: whether in the final round participants maintained access to
information about the features they were told would be irrelevant
for future decisions. As predicted, participants who completed their
final round in the before condition showed impaired performance on
unexpected offers compared with their performance on prior roundsin
this condition (M =57.3% + 3.7%, 8, = 0.14,95% HDI 0.04 to 0.24; Fig. 4a),
but maintained high accuracy on expected offers (M=78.4% + 5.8%,
Bo=-0.07,95%HDI-0.20t0 0.06). Critically, participants’ performance
on unexpected offers matched that of the prior rounds in the after
condition (8,=-0.02, 95% HDI -0.11 to 0.07), suggesting they could
successfully fall back on episodic memories when the feature-based
strategy was insufficient. Surprisingly, we also found that participants
who completed their final round in the after condition exceeded their
prior performance in this condition (M =66.7% + 3.0, B, =—0.13, 95%
HDI -0.21to —0.05). This improvement may stem from the increased
variety of offer types shown in the final round, which provided par-
ticipants withmore opportunities to make decisions aboutitems they
successfully remembered, whereas previous rounds with fewer offer
types may have tested only items for which their memory was weaker.

The results of experiment 4 suggest that, even under conditions
that strongly encouraged reliance on a feature-based strategy, par-
ticipants maintained detailed episodic memories that they could
access when needed. While participants showed clear evidence of
using feature-based computationsin the before condition, they were
still able to rely upon their episodic memories when faced with unex-
pected offers, performing comparably to the after condition. This
pattern of results provides evidence that episodic memory may serve
asa‘backup’toaid decisions wheninitially irrelevant features become
unexpectedly relevant.

Episodic memory recall becomes more targeted under
realistic decision demands

Anintriguing aspect of our results so far is that, when participants used
episodic memory for decision-making, their decision times scaled
with the total number of memories they recalled in each round rather
thanjust thoserelevant to each offer, suggesting that retrieval during
decision-making was not preferentially biased towards relevant memo-
ries.Suchabroad and unfocused memory search seems poorly adapted
to real-world contexts where the space of possible memories is vast,
raising the possibility that our relatively small memory sets may not
have provided sufficient pressure for participants to develop efficient
filtering strategies. In addition, our task’s simplified feature space, while
allowing usto characterize episodic memory useinacontrolled setting,
remains far simpler thanreal-world experience, which can consist of a
vast and nearly unlimited number of features. Although participants’
choicebehaviour was largely unaltered by the addition of new features
inexperiment2, this setting was still far from naturalistic, and it remains
possible that furtherincreases to feature dimensionality could reveal
more subtle differences. It is also important to note that structuring
our experiments as a series of rounds—where participants knew they
would be tested ontheir memory after each decision phase—may have
encouraged them to maintain episodic memories toimprove memory
test performance rather than for their utility for decision-making.
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Fig. 4 |Episodic memory is used to make choices about unexpected offers.

a, Experiment 4 choice accuracy, separated by all rounds before the final round
(labelled as previous (Prev.) rounds) and the final round in which participants
were asked to make decisions about both offers they expected (in the before
condition) as well as those that were unexpected (in both conditions withn = 65
inthe before condition and n = 60 in the after condition). Large points represent
group-level averages, with error bars representing the standard error of the mean.
Small points represent average choice accuracy for individual participants. By
design, only asingle offer was expected in the before condition. b, Participants’
rate of accurately recallingitems seen in each round of experiment 4 during the
freerecall portion of the memory phase. Chance performance is represented by
the horizontal line. Large points represent group-level averages, with error bars
representing the standard error of the mean. Small points represent average recall
rates for individual participants. ¢, Experiment 4 participants’ decision response
times (log transformed) as a function of the number of memories they accurately
recalled on each round. Left: large lines represent the group-level fit of a mixed-
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effects regression, with fits toindividuals plotted as smaller lines. Points represent
group-level averages with standard error of the mean. Right: fixed-effects slopes
and random-effects slopes for regression model fits. Boxes represent the fixed-
effects posterior distribution, with horizontal lines representing the mean and
boxes representing 50%, 80% and 95% HDIs. Points represent random-effects
slopes for each participant. d, Left: the proportion of offers taken as a function

of summed true offer value and recalled offer value for the before and after
conditions. Offer values are z-scored to facilitate comparison. Points display

raw choices, where O indicates a leave response and lindicates a take response.
Inlays show the mixed-effects slopes for each predictor, where boxes represent
the fixed-effects posterior distribution with horizontal central lines representing
the mean and boxes representing 50%, 80% and 95% HDIs. Individual points in the
inlays represent random slopes for each participant. Right: model comparison
showing the difference in ELPD, with error bars representing the standard error
of this difference. Unless otherwise noted, statistics in all figures were computed
withn=125.

We designed a fifth experiment to investigate (1) whether our
findings would translate to a more naturalistic setting in which these
constraints were relaxed, and (2) whether this would encourage par-
ticipants to develop more selective retrieval strategies that improve
decision-making. To address these questions, we used a larger memory
set, naturalistic stimuliand a continuous format with a surprise mem-
ory test. This task followed the structure of a single extended round
in our first experiment, where participants first encoded 21 episodes
thateach consisted of anaturalisticimage associated with abinary (+1
or 1) reward (Fig. 5a). Following a distractor phase identical to that
used in our previous experiments, participants were then given 30
offers about various features of the episodes (for example vehicles,

birds and things that fly; Supplementary Fig. 4). Finally, participants
completed asurprise memory test probing both free recall of the items
and memory for the reward associated with each.

We predicted that participants would demonstrate the signa-
tures of episodic memory retrieval during decision-making that
we established in our prior experiments. Given the larger memory
pool, we further expected that the number of offer-relevant memo-
ries recalled by participants would emerge as a stronger predictor of
response times thanin previous experiments, reflecting more targeted
retrieval processes.

Participants performed well on this task, achieving 70.6% + 1.0%
accuracy, whichwas well above chance (8,=1.02,95%HDI10.86 t01.18;
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Fig. 5| Realistic decision demands encourage participants to develop more
efficient retrieval strategies. a, Design of experiment 5. Top: participants
completed asingle, long round of each of the four phases used in prior
experiments. During encoding, participants were shown 21 naturalistic images
withabinary reward (+1or -1) represented by a green or red border. After the
distractor phase, they were asked to make decisions about 30 offers about these
episodes, which were then followed by a two-part memory test for free recall
and thereward associated with each item. Bottom: example features used for
the offers in experiment 5 with the images that matched each feature denoted
inblack. Each offer had between 1and 12 matching images. See Supplementary
Fig. 4 for allimages and offers provided to participants. b, Experiment 5

choice accuracy. Large points represent group-level averages, with error bars
representing the standard error of the mean. Small points represent average
choice accuracy for individual participants. ¢, Recall performance in experiment
5. Left: participants’ proportion of the 21 possible items that were accurately
recalled during the free recall phase. Right: participants’accuracy on the two-
alternative forced choice reward recall test. Large points represent group-level
averages with error bars representing standard error of the mean. Small points
represent average recall rates for individual participants. d, Experiment 5
participants’ decision response times (log transformed) as a function of the
number of offer-relevant memories (left) and overall total memories (right) that
they recalled. Large lines represented the group-level fit of regression models,
with fits toindividual participants plotted as smaller lines. Points represent

Choice accuracy Choice accuracy

group-level averages across ten bins with equal trialsin each and standard error
of the mean. Note that, because only a single memory test was completed by each
participant, the total number of memories was abetween-participants measure
inthis experiment. e, Results from the behaviour of simulated agents completing
experiment 5. On each offer, agents sample individual items and their associated
reward without replacement, controlled by two parameters. The sampling bias (1)
determines the randomness of this sampling such that larger values bias sampling
towards offer-relevant items, and a bias of zero is fully random. The probability of
stopping (¢) sets a constant probability that recall will halt after each sample and
controls the overall number of memories that are sampled within the task time
limit. Agents with lower 7 and higher ¢ are less accurate, and the number of offer-
irrelevant memories during each decision explains alarger proportion of variance
inresponse times whenrecallis more random. See Methods for more details.

f, The interaction effect of the number of offer-irrelevant memories and choice
accuracy on decision response times. Participants who are less accurate overall
tend to have response times that are more strongly related to their number of
irrelevant memories. The dark line represents the marginal posterior mean of this
effect, with 50%, 80% and 95% HDlIs. g, Fixed-effects slopes for regression models
predicting the response times of median-split low (n = 30) and high (n =33)
accuracy groups from their number of offer-relevant (left) and overall total (right)
memories. The horizontal line within each box represents the posterior mean and
boxes represent 50%, 80% and 95% HDIs. Unless otherwise noted, statistics in all
figures were computed withn = 63.

Fig. 5b). On average, participants recalled 12 + 0.5 items and demon-
strated excellent memory for the rewards associated with each item
(Maccuracy = 77.9% + 1.4%; B, = 0.78, 95% HDI 0.74 to 0.82; Fig. 5¢). These
results show that participants successfully adapted to the increased
complexity of this task, maintaining both effective decision-making
and memory recall.

Next, we examined participants’ response times and choice behav-
iour to test our primary hypotheses. As predicted, participants took
longer to make decisions when they recalled more memories that were
relevant to each offer (B, yemories = 0-03, 95% HDI 0.01 to 0.05; Fig. 5d),
suggesting that their retrievals were guided by amore selective search
through memory. Turning to choice behaviour, we found that partici-
pants’ decisions were sensitive to both true offer value (8., =1.03,95%
HDI0.84 to1.24) and recalled offer value (,ccyieq = 1.01,95% HDI1 0.81 to
1.21), consistent with our prior experiments. However, recalled offer
value provided a negligible out-of-sample predictive advantage over
true offer value (ELPD . yjieq-crue 4-25 + 2.66; Supplementary Fig. 4),

probably because participants” highly accurate memory for rewards
left little room for distortions in value to influence decision-making.
Interestingly, we also found that participants took longer to make
choiceswhenthey recalled more memories overall (B, yemories = 0-04, 95%
HDI0.02t00.06; Fig. 5d), similar to our previous experiments. The per-
sistence of this effect reflects, at least in part, the fact that participants
whorecalled more offer-relevant memories also tended to recall more
memories in general (r= 0.41; B, vemories = 0.74, 95% HDI 0.65 to 0.82).
However, arelated possibility is that individual differencesin memory
search strategies may drive these relationships, with some participants
engaging in broad, less selective retrieval that is more influenced by
offer-irrelevant memories, while others use a more targeted search
process focused primarily on retrieving offer-relevant memories.
Our next aim was to investigate this idea. We predicted that task
performance should be related to the selectivity of retrieval during
choice. We first explored this prediction computationally by simu-
lating agents that varied in how selectively they sampled memories
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during decision-making. Agents that sampled more broadly and ter-
minated search earlier showed both poorer task performance and
response times that were more strongly driven by memoriesirrelevant
tothe current offer (Fig. 5e). Consistent with this result, we found that
lower-performing participants’ response times were more strongly
related to the number of offer-irrelevant memories they recalled
(Bumemories<ceuracy = ~0-02, 95% HDI -0.04 to —0.002; Fig. 5f). This finding
suggeststhat participants who performed worse on the task engagedin
less selective memory retrieval, as their decision times were dispropor-
tionately influenced by memories that were not useful for the current
choice. Toexamine theseindividual differences more closely, we further
split participants into low- and high-performing groups and directly
compared whether total memories or offer-relevant memories better
predicted response times in each group. Low-performing participants
took longer to make decisions when they had more memories overall
(Bamemories = 0.08,95% HD1 0.03 to 0.12), but their response times were
not reliably related to the quantity of their offer-relevant memories
(Bamemories = 0.01,95% HDI-0.03 t0 0.05). As expected, high-performing
participants showed the opposite pattern: they took longer to respond
when they had more offer-relevant memories (B.yemories = 0-04, 95% HDI
0.01t00.07) but their response times showed no reliable relationship
with their overall pool of memories (Byemories = 0-02, 95% HDI -0.01
to 0.05). Indeed, offer-relevant memories better predicted response
times out-of-sample in high-performers (ELPD ¢ evanc—ota = 7-35 £ 3.34),
confirming that these participants likely engaged in more targeted
memory search during decision-making, but both memory measures
were equally predictive for low-performers (ELPD,¢jevane—torat —0-08 £ 2.7).
These findings confirm that more selective memory retrieval is associ-
ated with better decision performance, supporting the adaptive value
of targeted memory search during decision-making.

Together, the results of experiment 5 demonstrate that, when
memory demands more closely approximate real-world complex-
ity—through alarger memory pool, naturalistic stimuliand a surprise
memory test—participants continued to rely on episodic memory for
flexible decision-making. Yet, they differed in how they accessed their
memories, and the ability to engage in targeted memory retrieval rather
than broadly searching through all available memories distinguished
better from worse decision-makers. These results provide evidence
that, as memory demands approach real-world complexity, efficient
memory search becomes a crucial determinant of decision quality.

Controlling for individual differences in effort
An alternative explanation for the relationship between memory
retrieval and response times that we have uncovered s thatindividual
differencesintask engagement or effort may act as aconfounding third
variable. Under this account, more careful responding could lead to
improved performance onboththe decisionand memory phases of our
tasks, creating aspurious association between these measures rather
thanreflecting genuine episodic memory use during decision-making.
We conducted aseries of complementary analyses across each of
our experimentsto rule out this possibility. First, we predicted that, if
individual differences in effort were driving these effects, we should
observe a classic speed-accuracy trade-off during decision-making.
Contrary to this prediction, we found little evidence for a consistent
relationship between response speed and accuracy across experi-
ments (Supplementary Table 6). We next used performance during
the distractor phase as a proxy for effort. We reasoned that, if task
engagement were the common cause underlying both slower response
times and better memory performance, participants with superior dis-
tractor task performance should exhibit both patterns. To test for this
possibility, we included distractor performance as a covariate in our
analyses. This did not meaningfully alter the strength of the observed
relationship between recalled memories and response times in any
experiment (Supplementary Table 7). Lastly, we decomposed each
participant’s number of recalled memories per round into within-and

between-participant components to isolate effects occurring within
individuals from those driven by individual differences (note that this
was not possible in experiment 5, which did not use a round-based
structure). Within-participant effects remained largely consistent with
ouroriginal analyses, withminor differences in the strength of effectsin
experiments 1B (B.vemories = 0-05,95%HDI-0.002 to 0.10,90% HDI1 0.005
t00.09) and 4 (after condition: B, yemories = 0-05, 95%HDI-0.005t0 0.09,
90% HDI 0.003 to 0.09; Supplementary Table 8). Furthermore, when
datawere pooled across comparable experiments to assess replicabil-
ity, the pooled mean within-participant effect remained robust, with no
substantial deviations across experiments (Supplementary Table 9).

Together, these analyses provide strong converging evidence
against an effort-based explanation for our findings, supporting the
conclusion that participants used episodic memory during their deci-
sionsrather than exhibiting patterns driven by individual differences
intask engagement.

Discussion

Our findings indicate that people flexibly use episodic memory
to guide their choices in multifeature environments, particularly
when future task demands are uncertain. When faced with multiple
decision-relevant features (experiment1), participants relied primarily
onepisodic memories to compute offer values during decision-making,
as indicated by both their response times and choice patterns. This
strategy persisted even as feature complexity increased, suggesting
that participants stored experiences asintegrated episodes rather than
separate feature representations (experiment 2). When given advance
knowledge of feature relevance (experiment 3), participants shifted
towards amore computationally efficient feature-based strategy that
involved precomputing values during encoding. Yet, despite this shift
in strategy, participants continued to encode episodic memories, a
parallel operation that proved useful when knowledge about previously
irrelevantinformation was needed for decision-making (experiment4).
Finally,inan environment designed to induce pressure for participants
tomore efficiently recall their memories during decision-making, those
whoretrieved more selectively made better decisions (experiment 5).
Overall, theseresults demonstrate that episodic memory serves asan
adaptive solution to decision-making under uncertainty in complex
environments, allowing us to flexibly repurpose our memories accord-
ing to the demands of the present.

This work connects at least two established but largely separate
literatures on memory and choice. First, anumber of studies focused
ondecision-making have explored the ways in which individual experi-
ences may be recalled for choice?**2, This research, typically called
‘decision by sampling’, proposes that decision variables may be con-
structed by drawing samples from memory and explains anumber of
ways in which peoples’ choice behaviour differs when information is
learned from experience rather than instructed descriptions*. Much
of this work has emphasized episodic memory’s value as a store for
single experiences, which is a useful property when data are sparse
and summary statistics cannot be reliably constructed, such as at the
beginning of learning or following changes in the environment”%.
Our findings address a complementary computational advantage:
episodic memory’s ability to store experiences in high fidelity across
multiple features simultaneously. Second, other work has proposed
that episodic memory plays a critical role in our ability to infer new
information about the world by allowing the formation of new links
between past experiences***°. An important but underappreciated
partofthisroleis episodic memory’s ability to store multiple features
of experience, because each feature provides another opportunity to
relate past events with one another. Here, we connect these ideas by
proposing that features of episodes may enable the on-the-fly forma-
tion of new decision variables when they are required for a choice.

Our findings add to a substantial body of research which has found
that the brain contains multiple memory systems that can operate
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independently yetinteract continuously™?****%4*% with task demands
determining which is ultimately recruited for decision-making>**°,
Ourresults suggest that this parallel operationis adaptive—while incre-
mental learning can efficiently track relevant statistics when future
demands are known, episodic memory may serve as a crucial ‘backup’
system by preserving detailed records of experiences. This is indicated
by participants’ ability to successfully encode detailed episodes in
experiments 3 and 4 even while engaging in the feature-based strategy,
and by their ability to use these memories to support unexpected
decisions when incremental estimates were poorly calibrated. These
findings align with recent computational work’ suggesting that epi-
sodic memory may complementincrementally learned summaries by
enabling the computation of new task-relevant statistics when unex-
pected events occur. Further research has demonstrated that episodic
encoding is enhanced for schema-incongruent or surprising events®>,
which suggests that creating detailed memories is most critical when
current predictions fail. However, our resultsindicate that some level of
detailed episodic encoding may occur for most experiences, providing
abaseline level of flexibility for future behaviour that may be further
enhanced by surprise or prediction error signals®>*.

Separately, our experiments uncovered systematic differencesin
how memory search strategies adapt to task demands and distinguish
effective from ineffective decision-makers. In experiments 1-4, we
found that participants’ decision times scaled with their total number
of memories in each round rather than just those relevant to each
offer, suggesting relatively broad retrieval from memory. However, in
experiment 5, we found that better-performing participants were char-
acterized by their ability to target retrieval towards decision-relevant
memories. These findings suggest that, while some intrusion of irrel-
evant memories during retrieval is inevitable, as assumed by most
computational models of free recall®’, people also use more efficient
search strategies toimprove decision-making. Future work examining
how people develop selective retrieval strategies will be important
to understand what factors promote more efficient memory search
during decision-making.

Arelated next step lies in characterizing how the various organi-
zational principles of episodic memory guide choice. Classic compu-
tational models of memory retrieval have formalized how memories
are naturally organized and accessed according to their temporal
proximity and semantic relationships® . This work suggests that,
when we retrieve a memory, it automatically triggers the recall of
other memories that, for instance, occurred nearby in time or share
meaningful features. Indeed, participantsin our experiments showed a
clear tendency to consecutively recall items that were presented close
together during encoding (Supplementary Fig. 3). Such organizational
principles are probably central to memory-guided decision-making,
asindicated by findings demonstrating that choices are systematically
influenced by temporally proximate experiences?, by the context pre-
sent during both encoding® and decision-making®-*, and by semantic
similarity between experiences”*’, While our results show that people
can effectively use episodic memories for flexible decision-making,
they do not reveal the specific mechanisms by which memories are
accessed. Our behavioural measures were designed to be predicted
by basic properties of episodic memory recall and so remain agnostic
towards any particular model or sampling algorithm. Indeed, these
findings could theoretically arise from many different memory sam-
pling strategies—from random sampling to more structured retrieval
guided by these organizational principles. While we developed our
toy process model to demonstrate that basic probabilistic sampling
of memories canreproduce observed behaviour, itis likely that it does
not capture the sophisticated retrieval mechanisms that probably
governreal-world memory-guided decisions. Applying formal memory
models to value-based choice could provide a more precise account
of how memories are actually accessed during decision-making, while
potentially revealing new principles about how memory organization

shapes adaptive behaviour. Doing so will require not only experimental
paradigms that more closely approximate real-world decision-making,
where people draw upon vast numbers of feature-rich experiences
across extended timescales, but also methodology to measure direct
memory access during decision-making itself.

Related to this point, a critical feature of our experimental design
was that we collected memory measures immediately following par-
ticipants’ choices rather than during decision-making. We did not ask
participants to directly recall items during their decisions because
our aim was to assess the strategy participants relied upon without
instructing themto use any strategy in particular, and we reasoned that
this approach may bias them towards using their episodic memories
for choice. One way to circumvent this limitation would be to record
neural activity during the decision phase. For example, past approaches
using magnetoencephalography have successfully decoded both the
recall ofindividual episodes during standard memory tasks®>*' and the
rapid replay of sequences of memories during decision-making® °*,
One possible future direction would be to similarly attempt to decode
memory access during the decision phase of our task design. In addi-
tion to providing direct evidence for the recall of individual memories
during choice, taking such an approach may provide multiple insights
into the waysinwhichvalue is computed from memories, for instance
by testing hypotheses about the number, temporal order and semantic
relationships between recalled memories.

There are also several other limitations of our experimental
approach. First, we assumed that episodes consist of perfect recol-
lections of experienced details, when in reality these details are often
substantially compressed and abstracted®* . This simplification may
not capture how episodic memory actually operates in naturalistic
settings, whereimperfect and reconstructed details may alter its rela-
tive advantages over incremental learning. Separately, our design
lacked explicit behavioural measures during encoding that may have
revealed more subtle differencesin strategy use, particularly because
the feature-based strategy should impose greater demands during
encoding while the episodic strategy should be more demanding dur-
ingretrieval. Future work could address this limitation by manipulating
cognitive load at each of these timepoints, or by using neuroimaging
to predict subsequent recall from neural activity at encoding time.
Finally, while overall performance was not altered by increasing feature
complexity in experiments 2 and 5, suggesting that participants relied
onintegrated episodesrather than separate feature stores throughout
our tasks, it remains possible that people differ in the extent to which
they use either of these representations during choice. This possibil-
ity could be addressed by future experiments that manipulate feature
complexity within rather than across individuals.

Inconclusion, our results demonstrate that episodic memory plays
animportantrolein enabling flexible decision-making when future task
demands are unknown. By maintaining detailed representations of indi-
vidual experiences, episodic memory allows us to access details from
our past if they become relevant for present decisions. This flexibility
comesatthe cost of increased computational demands during choice,
leading people to adopt more efficient strategies based on precom-
puting decision variables when possible. Recent work on the timing
of memory-based decisions supports this view, showing that people
proactively compute value from memory whenever circumstances
allow them to anticipate future choice requirements®. Together, these
findings suggest that one reason why we maintain detailed memories
of the pastis to help us flexibly adapt to an uncertain future.

Methods

Experimental procedure

Unless otherwise noted, all procedures were identical across experi-
ments, and differences between experiments are summarized in Table 3.
Participants completed afour-part task over the course of asingle online
session designed to measure whether people accessindividual episodes
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Table 3 | Summary of experimental differences

Experiment 1 Experiment 2

Experiment 3 Experiment 4 Experiment 5

Number of rounds 5 7

8 9 1

Number of stimulus features

2: colour and category  4: texture, location, animacy

2: colour and category  2: colourand category  30: unspecified

and size
Reward range -9to9 -2to2 2t02 -2to2 -1to1
Decisions per round Sample A: 6; sample 4 Sample A: 3; sample 1(6in final round) 30
B:3 B: 3
Feature uncertainty No No Yes Yes No
manipulation
Surprise choice No No No Yes No

manipulation

to make decisions based on multiple features of past experiences
(Fig.1a). Completing all four parts (around) took approximately 5 min,
and participants completed five (experiment 1), seven (experiment 2) or
eight (experiments3and4) roundsin total. Inexperiment5, participants
completed a single round that took approximately 20 min.

Stimuli. In experiments 1, 3 and 4, stimuli varied across two features:
colour (red, yellow, blue or green) and category (animal, object, food
or scene). In experiment 2, stimuli instead varied across four binary
features: texture (with or without a pattern), location (aquatic or not
aquatic), animacy (animal or object) and size (larger or smaller than
amicrowave). In experiments 1-4, a total of 16 possible items were
used, with a subset of 6 pseudo-randomly sampled to be used in each
round. All two-feature items and an example subset (highlighted in
red) are shown in Fig. 1b. As demonstrated in this figure, the six items
used in each round were selected such that there were always three
items with a specific instantiation of each feature (for example, three
greenitemsand three animals), two of another type (for example, two
blue items and two objects) and one of another type (for example,
one food and one yellow). Items could repeat across rounds, and the
number of repetitions peritem was pseudo-randomly balanced within
each session. Items repeated between one and four times in a single
session depending on the experiment. Each time anitem appeared, it
was associated with a different reward. In experiment 5, stimuli were
naturalistic images with many possible features and 21 images were
shown asingle time each.

Encoding phase. In the first part of a round, participants com-
pleted a task designed to allow them to encode individual items and
an associated reward (which we refer to throughout as an episode).
Each item was presented on the screen for 1s, after which its reward
appeared alongsideit for another 6 s. Anitem’s associated reward was a
pseudo-randomly sampled integer (excluding 0) between either -9 and
9 (experiment1), between -2 and 2 (experiments 2,3 and 4) or between
-land1(experiment5).Inexperiment5, to aid future recall, the reward
was presented using a coloured border around the presented image
(greenforlandredfor-1). Tocreate abalance of future offer valuesin
eachround, the reward assignment algorithmensured that (1) anequal
balance of positive and negative reward was used in each round, (2) no
feature dimension (for example, blue or object) had asummed value of
exactly zero and that (3) at least one feature dimension had a positive
summed value and at least one had a negative total value. Immediately
after viewing the episode, participants completed an attention check
consisting of the item alongside two options, either the associated
reward that was just shown or another randomly selected reward. They
had 3 s to respond. Each episode was viewed only once, for a total of
six trials per round.

Distractor phase. Immediately following the encoding task, partici-
pants completed a90-s distractor task to prevent active rehearsal of the

episodes. This distractor consisted of a two-back working memory task
in which participants were shown one of several letters in sequence.
Participants were asked toidentify whether the current letter matched
the one presented two steps earlier.

Decision phase. Immediately following the distractor task, partici-
pants then made several decisions based on the features of each item
(sixdecisions: experiment1(sample A); four decisions: experiment 2;
three decisions: experiments1(sample B) and 3; one decision: experi-
ment4;30 decisions: experiment 5). Each decision consisted of an offer
in which a single feature (for example, animal) was displayed on the
screen, and participants were asked to either take or leave this offer.
Participants were informed that the value of each offer consisted of
the sum of each episode that was described by the offer (for example,
the value of the animal offer would be the sum of the rewards associ-
ated with all animals seen during encoding) and that they should take
positive offers and leave negative offers. Participantshad 7.5 s to make
each decision.

Memory phase. Finally, immediately after the decision task, we
assessed participants’memory for the episodes in two ways. In experi-
ments 1-4, participants were asked to freely recall the items that they
saw in each round. They were provided with six empty text boxes and
were told to enter the items in the order in which they remembered
them. Participants were further told to halt their recalland move onto
thenext taskifthey could nolonger remember any items. Following the
freerecall portion, participants were shown eachitem and were asked
to provide their memory for the reward that was associated witheach
item. In experiment 5, free recall proceeded similarly to the previous
experiments except that participants were given a single large box
to enter their responses. Value recall in experiment 5 consisted of a
two-alternative forced choice between eachimage with eitherared or
green border, and participants were instructed to choose the option
that matched what they saw earlier in the task.

Feature uncertainty manipulation (experiments 3 and 4). To deter-
mine whether episodic memory is used preferentially whenitis unclear
which features should be prioritized during encoding, we manipulated
whether information was provided to participants about upcoming
choices in experiments 3 and 4. In these experiments, participants
were told either before the encoding phase (four rounds) or after the
distractor phase (four rounds) that they would be shown offers of
only one feature type (either colour or category) during the decision
phase. The order in which participants were shown each condition
was counterbalanced.

Surprise choice manipulation (experiment 4). We aimed to further
test whether participants had access to features that were made irrel-
evant by the feature uncertainty manipulation, as we predicted that
one hallmark of using episodic memory for decision-making would
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be the availability of all of the features of an event at decision time. To
accomplish this, we added a final round to Experiment 4 in which par-
ticipants were informed—unexpectedly—that, regardless of whether
they had previously been told they would receive offers concerning
only a single feature, they would now be required to make decisions
about all possible offers.

Task instructions and practice. Across experiments1-4, participants
were told aversion of the following at the beginning of the experiment,
with slight variations depending on the experimental condition. For
brevity, we have left out aspects of the instructions related to button
presses and task timing:

Today youwill be playing agame where your jobis to earn as many
points as possible. You will first see severalimages and will learn
how many points each image is worth. You will then be asked to
make choices based on what you have learned in order to earn
points. The game will unfold over several different phases, and
you will complete multiple rounds of these phases. Each roundis
independent of the others, sowhatyou learnin one round does
notinfluence the other rounds atall.

Inthefirst phase, you will be shown severalimages, one atatime,
alongside how many pointsitis worth. Eachimage can be worth
eithera positive or negative number of points. After viewing an
image and its value, you will be asked to identify the number of
points it was worth. You willbe shown two numbers on either the
left orright side of the screen. One of these numbers will be the
image’s value, while the other will not. You will see each image
and its point value only oncein around.

Youwillneed to use the value of eachimage to make choices. You
will be given an offer onthe screen and will be asked whether you
would like to take or leave the offer. You should take an offer if you
think it will allow you to earn more points, and you should leave
an offer if you think it will cause you to lose points. All offers will
consist of different features of the images you saw. Each offer is
worth the sum of the point values of all images that match that
feature.

In between the two phases you just learned about, you will
complete another brief task. During this phase, you will see a
sequence of letters presented one atatime. Yourjobisto deter-
mineiftheletter onthescreen matches theletter thatappeared
two letters before.

The last phase is a brief memory test where you will be asked to
recall information about the items and point values that you
learned about in the first phase.

The instructions for experiment 5 used this same language but
did notinclude any information about rounds or the memory test.

During the instructions, participants were provided with two
practice trials for each phase except the memory phase. Partici-
pants were required to achieve 100% on a multiple choice compre-
hension test with ten questions about the instructions in order to
proceed with the study. They were further required to repeat all
instructions related to any missed questions until they answered
correctly. If they missed more than three questions, they were
required to repeat the entire sequence of instructions, including
practice trials.

Participants. All experiments were approved by the New York Uni-
versity Institutional Review Board, and all participants provided
informed consent before their participation. Participants with normal

or corrected-to-normal vision were recruited from the New York Uni-
versity participant pool. Compensation was provided in the form
of course credit. Participants were excluded if they indicated on a
post-task questionnaire that they wrote any information down during
the study or if they either failed to answer or provided nonsensical
responses to the post-task questions. To incentivize honest responses
on this questionnaire, participants were told that they would receive
compensation regardless of their answers.

Experiment1(sampleA), 83 participants were recruited and 16 were
excluded, leading to afinalsample of 67 participants (M,g =19.05 £ 0.15;
23 males, 42 females, 2 declined to say). For experiment 1 (sample B),
58 participants were recruited and 8 were excluded, leading to a final
sample of 50 participants (M, =18.76 + 0.2;14 males, 36 females). For
experiment 2, 90 participants were recruited and 15 were excluded,
leading toafinal sample of 75 participants (M,, = 18.89 + 0.17;17 males,
56 females, 2 declined to say). For experiment 3 (sample A), 61 par-
ticipants were recruited and 11 were excluded, leading to a final sam-
ple of 50 participants (M, =18.93 + 0.18; 13 males, 37 females). For
experiment 3 (sample B), 97 participants were recruited and 13 were
excluded, leading to afinal sample of 84 participants (M,,. =18.81+ 0.14;
25 males, 58 females, 1 declined to say). For experiment 4, 139 partici-
pants were recruited and 14 were excluded, leading to a final sample
0f 125 (M4 =19.14 £ 0.12; 42 males, 83 females). We recruited a larger
sample forexperiment4because each participant could complete only
one of the before/after conditions during the final ‘surprise’ round,
and we aimed to have roughly comparable numbers for each condi-
tion to our prior experiments. For experiment 5, 72 participants were
recruited and 9 were excluded, leading to a final sample of 63 partici-
pants (M,,. =18.78 + 0.16; 17 males, 46 females). We determined our
sample sizes based on effects measured in aninitial pilot study, which
isreported in Supplementary Fig. 5.

Model simulations

We formalized the episodic-based decision strategy using a toy process
model. This model makes decisions by sequentially sampling indi-
vidual memories and their associated rewards without replacement.
Memories each consist of a binary feature vector and reward. When
given an offer, the model first samples a memory i with probability
computed using a softmax function with sampling bias parameter 7.
Thelogitis defined as

T ifmemory i is relevant to current decision
logit; = . L
0 ifmemory i isirrelevant

The sampling probability for each memory is then

B exp(logit;)
>i= Y exp(logitj) .

i
This createsasampling bias where relevant memories have probability

2P0 _ whileirrelevant memories have probability L__ When
Zj exp(logit;) > exp(logit;)

v
=0, all memories are sampled uniformly. As 7 increases, the model
increasingly favours sampling memories that share features with the
current offer.

After sampling amemory, the modeladdsitsreward toarunning
sumandincrements the elapsed decisiontime by afixed recalltime. The
model then decides whether to continue sampling using a geometric
stopping rule: at each step, sampling terminates with probability ¢.
If sampling continues, the model selects another memory from the
remaining unsampled memories, with probabilities renormalized over
the available set. The recalled value for memory i includes Gaussian
noise to mimic imprecise recall of reward:

Vi =r;+¢€;,
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where r;is the true reward and ¢; ~ (0, ¢?). The total recalled value
isthen

Viecalled = z 43

ie sampled

Sampling terminates when either (1) the stopping criterion is met,
(2) allmemories have been sampled or (3) maximum decision time is
reached. The total decision timeis then

RT = Nsampled X Lrecall>

where .., is a constant. Finally, once sampling has terminated, the
model makes abinary choice based on whether the total recalled value
is positive:

1 if Viecalleq > O and at least

1relevant memory was sampled
Choice =

Bernoulli (0.5) if norelevant memories

were sampled

We also formalized the feature-based strategy using a model that
precomputes the value of each feature during encoding by summing
the rewards associated with all items sharing that feature. During the
decision phase, the model simply retrieves the cached value for the
offered feature and makes a choice according to a logistic choice rule
with inverse temperature . This strategy predicts constant decision
times based on only on a non-retrieval time p because only a single
cached value must be referenced on each choice.

To first illustrate the behaviours that allowed us to distinguish
between episodic and feature-based decision strategiesin Fig.1c, we
simulated each model on the same basic structure used with human
participants inexperiments1-4 (N = 6 memories). We ran 5,000 simu-
lations for each model with the following values for each parameter.
For the episodic model these were: recall time ¢,..,; = 1, reward recall
noise 0 = 0.5, stopping probability ¢ = 0.1, sampling bias =0 and a
maximum decision time of 7.5 s. In these simulations, t,..,; exerts no
influence over recall because its product with the number of possible
sampled memories cannot exceed the maximum decision time. For
the feature-based model this was: non-retrieval time p =1.5s and
inverse temperature 8 =5.0. We chose these parameters purely to
illustrate (1) the expected positive relationship between decision
response times and the number of sampled memories and (2) that
recalled offer value should differ from true offer value as a func-
tion of the sampled memories and distortionsinreward recallin the
episodic memory model. In general, these properties are expected
under any values of ¢ and olarge enough to create variationinrecalls
across decisions.

We also simulated episodic memory agents completing experi-
ment 5 (Fig. 5e) by generating N = 21 memories with features chosen to
create avariety of offers with different numbers of relevant memories.
Performance was then simulated across several parameter combina-
tions (sampling bias 7€ {0, 1, 2.5, 5,10} and probability of stopping
Psop €10.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8}), with 5,000 independent
agents for each combination. We used an upper bound of 7.5 s for
eachdecision. The reward recall noise o was fixed to anegligible value
(0.001) to more clearly assess the impacts of sampling bias and the
probability of stopping on choice accuracy. We also fixed the recall
time t,..,; to 1in order to ensure that agents with minimal stopping
tendencies (low ¢) could not exhaustively search all available memo-
ries, thereby preserving the variance in retrievals necessary to create
individual differences in performance. Because decision response
times are determined by the overall number of memories recalled,
we focused on assessing how each parameter combination impacts

therelationship between the number of sampled memories that were
irrelevant to each offer and accuracy. We calculated the amount of
variance in response times explained by irrelevant memories across
all of the agents with each combination of parameters.

Statistical analysis

All data were analysed with regression models estimated using hier-
archical Bayesian inference such that group-level priors were used
to regularize participant-level estimates unless otherwise specified.
Predictors were specified as fixed effects alongside random slopes
andintercepts that were allowed to vary across participants. In experi-
ments 3A, 3B and 4, parameter estimates for rounds completed in
either the before or after conditions were fitted separately. The joint
posterior was approximated using No-U-Turn Sampling as imple-
mented in Stan’. Four chains with 2,000 samples (1,000 discarded
asburn-in) were run for a total of 4,000 posterior samples per model.
Chain convergence was determined by ensuring that the Gelman-
Rubin statistic R was close to 1. Default weakly informative priors
implemented in the brms package were used for each regression
model”™. For all models, fixed effects are reported in the text as the
mean of each parameter’s marginal posterior distribution alongside
95% HDIs. Infigures, 95%, 80% and 50% HDIs are shown, each indicating
therange that contains the corresponding percentage of the posterior
density. Parameter values outside of these ranges are unlikely given
the model, dataand priors.

Response time analysis. To examine how the number of recalled
memories impacted the amount of time it took participants to make
their choicesinall experiments, we used alinear mixed-effects model
to predict trial-wise response times. Response times were modelled
using ashifted lognormal distribution, which accounts for the positive
skew typical of response times. We included both random intercepts
and slopes for participants toaccount forindividual differencesinboth
baseline response speed and sensitivity to the number of memories
recalled. The model can be written as

RT; ~ ShiftedLogNormal(uy, 0, 6)

H; = Bo + BinMemories;; + ug; + u;;nMemories;;

where iindexes trials andjindexes participants, and the tilde () indi-
cates how the outcome variableis distributed. The parameters u,;and
uyrepresent therandomintercepts and slopes for each participant, o
isthe scale parameter and @is the shift parameter of the distribution.
The number of memories participantsrecalled ineach round (nMemo-
ries;) was included as a continuous predictor. We further conducted
a separate analysis of the number of offer-relevant memories that
participants recalled in each round, which consisted of an identical
model but with this predictor instead.

In experiment 5, the mixed-effects model of the total number of
memories recalled by participants included only a random intercept
because this measure did not vary within participants. We also assessed
how individual differences in task performance related to the impact
of recalled memories on response times in two ways. First, using the
same mixed-effects modelling framework, we modelled the relation-
ship between the number of offer-irrelevant memories participants
had and their performance as

K = Bo + BinlrrelMemories;; + B,Accuracy; + BsnlrrelMemories;;

xAccuracy; + ug; + uynirrelMemories;,

where Accuracy;is each participant’s average choice accuracy. Second,
we determined whether the total number of memories or the number
of offer-relevant memories better predicted response times as a func-
tion of performance. Specifically, we split participantsinto two groups
based onthe mediantask performance, refit the original mixed-effects
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models to each group and then assessed model fit by separating the
data into ten folds and cross-validating, as described in detail in our
decision analyses.

Decision analysis. To analyse the extent to which decision-relevant
variables influence participants choices in all experiments, we fitted
two mixed-effects logistic regression models. Binary choices (1 = offer
taken, O = offer rejected) were predicted by either an offer’s true value
oritsrecalled value. The true value of an offer (TrueValue,) was just the
sum of all offer-relevantitems that were shown to the participants. By
contrast, we computed therecalled offer value (RecalledValue;) as the
sumover the reward that wasremembered for each offer-relevant item
that was also recalled during the free recall phase. These predictors
were z-scored before model fitting to facilitate comparison between
them. Each modelincluded random intercepts and slopes to account
for individual differences in both baseline offer acceptance rates and
value sensitivity. These models can be written as

Choice; ~ Bernoulli(p;)
logit(p;) = Bo + BiTrueValue;; + ug; + uyTrueValue;

logit(p;) = Bo + BiRecalledValue; + ug; + uj;RecalledValue;

To determine the extent to which either recalled offer value or true offer
value best predicted choices, we compared model fit using either pre-
dictor. Specifically, model fit was assessed by separating the datainto
ten folds and cross-validating. The ELPD was then computed by sum-
ming theloglikelihood for each held out datapointand thenused asa
measure of out-of-sample predictive fit for each model, where higher
ELPD values suggest better model fit, as they indicate a higher likeli-
hood of accurately predicting new data. To compare models, we then
subtracted the pointwise ELPD estimates and calculated the standard
error of this difference to quantify uncertainty of the comparison’”>.

Lastly, we assessed overall task performance using a separate
mixed-effects logistic regression model. The model included only
fixed and random intercepts to assess whether accuracy (1= correct,
0 =incorrect) was from different from chance-level performance (0.5).
The model was simply

Correct; ~ Bernoulli(p;)

logit(py) = Bo + ug;

Surprise round analysis. In experiment 4, we also assessed perfor-
mance on the final ‘surprise’ round where participants were required
to make decisions about the offers that they expected (in the before
condition) as well as for offers that were unexpected (in both condi-
tions). To do so, we calculated a APerformance score for each partici-
pant, which consisted of taking their difference inaccuracy on the final
round relative to their average accuracy on previous rounds (previous
round accuracy - last round accuracy). We calculated this score sepa-
rately for expected and unexpected offersin each condition and then
used APerformance as the outcome variable in separate simple linear
regression models:

APerformance; ~ Normal(y, 0)

u=Po

Memory analysis. We assessed performance on each part of the mem-
ory phase of experiments 1-4 using two complementary models. First,
we examined participants’ overall recall rates, which we defined as
the proportion of items they accurately recalled relative to all of the
items they were shown. We compared these recall rates with chance
performance, which we defined as the probability of correctly guess-
ingitems whenrandomly selecting 6 items from the pool of 16 possible

items that could be shown onagivenround, which was 37.5% (or 6/16).
For each participant, we computed the difference between their mean
recallrate and chance (Recall;) and thenfitted asimplelinear regression
model to these difference scores:

Recall; ~ Normal(B, 0)

Next, to assess the accuracy of participants’ memory for the reward
associated with successfully recalled items, we fitted a mixed-effects
linear regression model predicting participants’remembered rewards
from the true associated rewards. Both remembered (Remembere-
dReward;) and true (TrueReward,) rewards were normalized by divid-
ing by the maximum absolute value in the dataset. The modelincluded
random intercepts and slopes for participants toaccount forindividual
differences in both baseline memory and value sensitivity:

RememberedReward; ~ Normal(u;;, 0)

1 = Bo + BiTrueReward;; + ug; + uy TrueReward;

Because experiment 5 assessed participants’ memory for associated
reward using a two-alternative forced choice task, we fitted a simple
mixed-effects model to determine the extent to which their responses
differed from chance. This model was identical to the model used to
assess overall task performance.

Replication analysis for experiments 1-4. To assess the extent to
whichour effectsreplicated and/or differed across experiments sharing
similar designs, we also ran our primary analyses with anidentifier for
each sample included as a fixed interaction effect. Data were pooled
across comparable experiments (experiments 1and 2; experiments 3
and 4), and we used sum-to-zero (effect) coding for the experiment
factor. Thisapproach allows each experiment’s coefficient to represent
itsdeviation from the pooled mean across all experiments, rather than
acomparison with an arbitrary reference experiment. We performed
these pooled analyses for both the response time and decision models.
Inexperiments 3 and 4, we additionally assessed interaction effects of
condition on decision response times in a single mixed-effects model
and assessed the difference in ELPD differences between conditions
from pooled choice models. Theresults of these analyses are reported
inSupplementary Tables 4 and 5.

Controlling for individual differences in effort. Across all experi-
ments, we also assessed possible contributions of individual differ-
ences in effort to the relationship between the number of recalled
memories and response times in three ways. First, we looked for evi-
dence of aspeed-accuracy trade-off during the decision phase of each
experiment by fitting mixed-effects models predicting choice accuracy
fromresponse times:

Correct; ~ Bernoulli(p;)

logit(py) = Bo + RTj; + ug; + uyRTy

Second, weincluded z-scored performance on the two-back distractor
task as a fixed-effect covariate in the response time models. Third, to
distinguish between-participant and within-participant effects of the
number of memories presented on response times, we decomposed
this predictorinto two orthogonal components: abetween-participant
component representing each participant’s average number of memo-
ries recalled, and a within-participant component representing the
deviationfromeach participant’s personal average. The results of these
analyses are reported in Supplementary Tables 6-9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
ThedataareavailableviaGitHubathttps://github.com/jonathanicholas/
nm2025 emdm.

Code availability
The codeisavailable via GitHub at https://github.com/jonathanicholas/
nm2025 emdm.
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