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Episodic memory facilitates flexible  
decision-making via access to detailed events
 

Jonathan Nicholas       & Marcelo G. Mattar

Our experiences contain countless details that may be important in 
the future, yet we rarely know which will matter and which will not. This 
uncertainty poses a difficult challenge for adaptive decision-making, as 
failing to preserve relevant information can prevent us from making good 
choices later on. One solution to this challenge is to store detailed memories 
of individual experiences that can be flexibly accessed whenever their 
details become relevant. By allowing us to store and recall specific events 
in vivid detail, the human episodic memory system provides exactly this 
capacity. Yet, whether and how this ability supports adaptive behaviour 
is poorly understood. Here we aimed to determine whether people use 
detailed episodic memories to make decisions when future task demands 
are uncertain. We hypothesized that the episodic memory system’s ability 
to store events in great detail allows us to reference any of these details 
if they later become relevant. We tested this hypothesis using a novel 
decision-making task in which participants encoded individual events 
with multiple features and later made decisions based on these features 
to maximize their earnings. Across 5 experiments (total n = 535), we 
found that participants referenced episodic memories during decisions 
in feature-rich environments and that they did so specifically when it 
was unclear at encoding which features would be needed in the future. 
Overall, these findings reveal a fundamental adaptive function of episodic 
memory, showing how its rich representational capacity enables flexible 
decision-making under uncertainty.

Humans possess the remarkable capacity to remember individual 
events from the past in high fidelity using our episodic memory 
system1,2. From merely a single exposure, we can recall complex expe-
riences consisting of many different details—the taste of a meal, the 
layout of a restaurant, the conversation around a dinner table—even 
when it is unclear whether we will actually ever need any of this informa-
tion again. Why do we maintain such detailed memories of past events?

One possible answer is that this ability is adaptive, because the 
aspects of an experience that will be relevant for future behaviour are 
rarely apparent when they are first encountered. For instance, when 
deciding whether to visit a restaurant, you may need to recall details 
that were not previously important during your prior meals there, 

such as whether the menu can accommodate your vegan friend or if 
the ambiance is appropriate for a work meeting. By storing detailed 
representations of past experiences, our episodic memory system 
can allow us to access any of these details if they ever become rel-
evant in the future. In this way, episodic memory may enable flex-
ible decision-making by allowing us to repurpose our memories for 
novel goals.

Despite a long history of work on the adaptive role of episodic 
memory3–6, computational research has only recently started to charac-
terize the advantages it can provide for decision-making7–9. A key theme 
in this work is that the episodic memory system is poised to address 
several shortcomings faced by other forms of memory, particularly 
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A separate but related challenge is that incremental learning is 
most successful when experiences are repeated, yet actual experi-
ences are unlikely to be encountered more than a single time. Episodic 
memory, by contrast, allows us to encode and retrieve individual expe-
riences, making it naturally suited to real-world environments where 
experiences rarely repeat8. Indeed, this capacity for one-shot learning 
has dominated research on episodic memory’s role in decision-making, 
where much work has demonstrated that humans can effectively 
guide their decisions by retrieving and leveraging individual past 
experiences22–27. Yet, despite this progress, whether the episodic mem-
ory system’s ability to encode detailed experiences provides its own 
advantages for decision-making remains largely unknown. Our primary 
goal was to address this gap.

Here we hypothesized that (1) people use episodic memory to 
access details from past events for decision-making in feature-rich envi-
ronments, and that (2) this strategy enables flexibility when it is unclear 
which details will be needed in the future. To directly test these ideas, 
we developed a decision-making task in which participants were asked 
to encode individual episodes consisting of items that varied across 
multiple features (for example, colour and category) and an associated 
reward (Fig. 1a,b). After encoding these episodes, participants made 
value-based decisions in which they were shown offers consisting of 
specific features (for example, red or animal) and were then asked to 
either take or leave each offer. To determine the value of these offers, 
participants needed to sum the rewards associated with all items that 
had the offered feature in common (for example, all red things).

incremental learning, which aids decision-making by allowing us to 
gradually estimate the value of different choice options over many 
repeated encounters10–16. Importantly, incremental learning suffers 
from a well-known problem called the curse of dimensionality, which 
arises because computational and memory demands rapidly scale 
with the richness of what must be learned17. For instance, when learn-
ing about choice options with multiple features, an agent capable of 
only incremental learning would need to track and update values for 
each independently.

One way humans may circumvent this issue is by selectively learn-
ing about only the most relevant features of experience while ignoring 
information about the rest18. Using selective attention in this way can 
allow for efficient decisions in high-dimensional environments—when 
a feature is deemed relevant, its value is tracked and incrementally 
updated, requiring only a simple retrieval at choice time. Such a strat-
egy is highly effective under circumstances in which feature relevance 
can be reliably inferred, and people probably employ it when this is the 
case19,20. But environments like this are, in reality, rare. Furthermore, 
augmenting incremental learning with selective attention enforces 
rigidity, ultimately harming future choices that may depend on fea-
tures that were initially ignored. There are also fundamental limits to 
the number of features that can be reasonably attended to and tracked 
simultaneously21, making this strategy increasingly impractical in 
the real world. These limitations are precisely the types of problems 
that episodic memory’s detailed representations are best equipped 
to address.
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Fig. 1 | Task design. a, The four phases completed by participants in each round 
of the task used in experiments 1–4. In the first part of a round, participants 
completed an encoding phase that allowed them to encode individual items 
and an associated reward (an episode). Immediately after viewing the episode, 
participants completed an attention check consisting of the item alongside 
two options, either the associated reward that was just shown or another 
randomly selected reward. Participants completed six trials per round. Following 
encoding, participants then completed a 90-s distractor task consisting of a 
two-back working memory task. This was designed to prevent active rehearsal 
of the episodes. Following the distractor, participants completed a decision 
phase in which they were shown offers consisting of a single feature and were 
asked to either take or leave this offer. The value of each offer was the sum of all 
episodes described by the offer. Lastly, after the decision phase, participants 
completed a subsequent memory test consisting of two tasks. They were first 
asked to freely recall each of the items they had seen in the round. They were then 
shown each item and asked to provide the reward that was associated with each 
item. Participants completed between five and nine rounds, depending on the 
experiment. b, The full set of stimuli shown to participants in experiments 1, 3 
and 4. Stimuli differed along two dimensions: colour and category. A subset of 
six images were sampled from these to be shown in each round (with an example 

shown in red). See Supplementary Fig. 1 for the stimuli used in experiment 2. 
c, Simulated choice behaviour on the decision phase from two toy process 
models implementing either an episodic or feature-based decision strategy 
(see Methods for details). During each offer, the episodic model randomly 
samples individual items and their associated reward without replacement. To 
make choices, it then sums up the recalled rewards associated with all recalled 
offer-relevant items that match the offer, and then chooses to either take or leave 
each offer depending on whether this decision variable was positive or negative, 
respectively. This strategy leads to longer decisions when more memories have 
been retrieved (top). Its decision variable (the recalled offer value) also differs 
from the true offer value due to the items and associated rewards that the model 
actually recalls on each decision (bottom) and can be used to more strongly 
predict choices. By contrast, the feature-based model instead sums up the value 
of rewards associated with each feature at encoding time and chooses with some 
noise at decision time, leading to neither of these predictions. d, The feature 
uncertainty manipulation used in experiments 3 and 4. On half of the rounds, 
participants were informed either before or after encoding about which type 
of offer they would be given in the future. For experiment 3, the screen showed 
either colour or category offers, and for experiment 4, it showed a specific 
instance of either colour or category (for example, red, blue, object and so on).
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Importantly, this task could be solved using two different strate-
gies, corresponding to either using episodic memory at choice time (an 
episodic strategy) or using incremental learning and selective atten-
tion at initial encoding (a feature-based strategy). To accomplish the 
former, participants could use episodic memory to compute an offer’s 
value ‘on-the-fly’ during their decisions by retrieving and summing 
the rewards associated with each offer-relevant item. Alternatively, 
they could instead attend to individual features during encoding and 
precompute a sum for each. While the episodic strategy offers more 
flexibility because episodes can be repurposed according to present 
demands, it comes at the expense of greater computation at choice 
time. Likewise, the feature-based strategy may yield more efficient 
decisions because it removes the need to reference individual episodes 
during decision-making, but sacrifices flexibility. This is one instance 
of a broader trade-off between computational efficiency and flexibility 
seen across learning and decision-making systems in the brain8,11,28,29.

We examined the extent to which participants engaged in these 
two strategies using several variants of this task across five different 
experiments (total n = 535), finding evidence that humans use epi-
sodic memory to flexibly access features of past experience during 
decision-making specifically when future task demands are unknown.

Results
Episodic memory allows access to details from past events for 
decision-making
In experiment 1, we first aimed to test whether people primarily rely on 
episodic memory rather than feature-based selective attention when 
making decisions in environments with multiple features. In this experi-
ment, participants completed five rounds, each consisting of four 
phases (Fig. 1a,b). Participants first encoded six individual episodes, 
where each episode consisted of an item and its associated reward. 
This encoding phase was then followed by a brief two-back working 
memory task to prevent active rehearsal. Immediately following this 
task, participants then made value-based decisions about features of 
earlier encoded episodes. At the end of each round, participants were 
asked to first freely recall all items they had seen in that round and then 
report each item’s associated reward.

We hypothesized that the computational demands of tracking 
multiple features simultaneously would make a feature-based strategy 
impractical, leading participants to instead use episodic memory to 
compute offer values at the time of choice. We tested this hypoth-
esis in two independent samples to ensure the replicability of our 
findings. Before addressing our primary question, we first examined 
whether participants learned to make effective decisions in the task. 
At the group level, participants in both samples tended to take posi-
tive offers and reject negative offers (sample A: Maccuracy = 63.6% ± 1.5%, 
β0 = 0.46, 95% highest-density interval (HDI) 0.33–0.59; sample  
B: Maccuracy = 60.8% ± 2.3%, β0 = 0.36, 95% HDI 0.17 to 0.55; where M is 
the mean, and β0 is the regression coefficient), despite substantial 
interindividual variability (Fig. 2a). Participants’ choices therefore 
reflected their ability to compute the value of each offer by summing 
over individual experiences.

Our next goal was to examine whether participants maintained 
memory traces for the individual episodes they encoded in the first 
part of each round. To accomplish this, our experiment required par-
ticipants to complete an additional memory phase immediately after 
the decision-making phase of each round (Fig. 1a). This memory phase 
consisted of two parts in which participants were asked to remember 
both elements of the episodes they had seen: they were first asked to 
freely recall each of the six items from a round, and then to recall the 
reward that was associated with each item. Participants had robust 
memory for the individual episodes, remembering between three 
and four items, on average (sample A: Mrecall = 63% ± 2.5%; sample B: 
Mrecall = 64.7% ± 2.8%; Fig. 2b), which was well above chance-level recall 
(sample A: β0 = 0.26, 95% HDI 0.20 to 0.31; sample B: β0 = 0.27, 95% 

HDI 0.22 to 0.33). Item recalls exhibited classic properties of episodic 
memory, with items presented close together during encoding being 
more likely to be recalled consecutively (temporal contiguity effect30; 
Supplementary Fig. 2), providing further evidence that participants 
engaged episodic memory during the task. Participants also accurately 
remembered the rewards associated with each item, showing a strong 
positive relationship between remembered and actual rewards (sample 
A: βreward = 0.52, 95% HDI 0.44 to 0.59; sample B: βreward = 0.47, 95% HDI 
0.37 to 0.56; Supplementary Fig. 3). These results demonstrate that 
participants formed and retained strong memories for each episode 
beyond the decision-making phase and that individual memories were 
available for potential recall at choice time.

Next, to disambiguate between the episodic and feature-based 
strategies, we used participants’ responses on the memory phase 
to analyse their choice behaviour. First, we reasoned that recalling 
an individual episode should take time30–32 and that, accordingly, 
the amount of time it takes to make a decision should scale with the 
number of episodes that are referenced (Fig. 1c). Importantly, the 
feature-based strategy makes no such prediction, as only a single item 
(a precomputed offer value) must be retrieved at choice time. To test 
this idea, we first used participants’ free recall data to determine the 
total number of items that they accurately recalled on each round 
of the task. We then examined whether they took longer to respond 
to offers during rounds on which they recalled more items overall. 
As predicted, participants took longer to decide when they subse-
quently recalled more memories (sample A: βnMemories = 0.05, 95% HDI 
0.02 to 0.08; sample B: βnMemories = 0.07, 95% HDI 0.03 to 0.11; Fig. 2c). 
We next conducted a complementary analysis examining whether 
decision response times were specifically related to the number of 
offer-relevant memories recalled—that is, only those memories whose 
features matched each offer (for example, only recalled red items for 
offers about red things). Interestingly, we found no consistent rela-
tionship between response times and the number of offer-relevant 
memories recalled (see Supplementary Table 1 for results across all 
experiments). Together, these results suggest that participants did not 
retrieve exclusively the memories needed for each decision. Rather, 
participants broadly retrieved their memories, presumably selecting 
from them only the trial-relevant information before making a choice.

Having observed response time patterns suggesting that par-
ticipants accessed individual memories during their decisions, we 
moved to examine the actual choices they made. We reasoned that 
if their decisions were based on the rewards they remembered being 
associated with each item, as predicted by an episodic strategy, their 
choices should be sensitive to the summed value of these remem-
bered rewards (Fig. 1c). To test this, we used participants’ responses 
on the reward memory portion of the memory phase to determine 
the recalled value of each offer. Specifically, we summed over the 
reported remembered reward of each offer-relevant item that was 
also recalled during the free recall phase. By contrast, we expected 
that evidence for a feature-based strategy would manifest as choices 
being primarily driven by the true value of each offer, independent 
of what participants explicitly remembered. This prediction follows 
from the nature of feature-based learning: if participants precomputed 
feature values during encoding, these cached values would be immune 
to later forgetting or distortions of individual episodes. To arbitrate 
between these possibilities, we fitted two logistic regression models 
to participants’ choices: one that used the true offer value to predict 
each choice, and another that used recalled offer value to predict each 
choice. We then compared the out-of-sample predictive accuracy of 
each model using cross-validation.

While participants’ choices were sensitive to both true offer value 
(sample A: βtrue = 0.73, 95% HDI 0.56 to 0.91; sample B: βtrue = 0.61, 95% 
HDI 0.32 to 0.92) and recalled offer value (sample A: βrecalled = 0.89, 95% 
HDI 0.69 to 1.11; sample B: βrecalled = 0.83, 95% HDI 0.55 to 1.15), recalled 
offer value was slightly more effective at predicting held-out choices 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02383-3

in both samples (sample A: expected log pointwise predictive density 
(ELPD)recalled−true 21.00 ± 15.63, sample B: ELPDrecalled−true 13.58 ± 9.30; 
Fig. 2d and Supplementary Table 2). This result indicates that par-
ticipants tended to rely more heavily on the information contained in 
individual episodes, namely the identity and value of items, to make 
their decisions.

One limitation of this experiment is that it does not distinguish 
between two fundamentally different ways that information could be 
represented in memory. One possibility, which we have suggested so 
far, is that experiences are stored as integrated episodes, where mul-
tiple features are bound together into a single conjunctive representa-
tion (for example, ‘butterfly’)33,34. Alternatively, individual experiences 
could be stored as separate features (for example, ‘blue’ and ‘animal’ 
as independent elements)35. Although both approaches could support 
value computation in our task, the latter becomes increasingly chal-
lenging as more features must be maintained and retrieved. To test this 
idea, we conducted a second experiment that was nearly identical to 
experiment 1, but where we doubled the number of features associated 
with each stimulus (see Table 3 for a summary of differences between 
these experiments and Supplementary Fig. 1 for all stimuli used in 

this experiment). Specifically, in this experiment the stimuli varied 
across four binary features: texture (solid or pattern), location (land or 
sea), animacy (animal or object) and size (small or large). Offers then 
consisted of one of the feature levels (for example, solid or sea) where 
the value of each offer was the sum of all stimuli that had the offered 
feature level in common (for example, all solid things).

We reasoned that, if participants relied upon memories com-
prised of separate features, this increased complexity would impair 
performance. Conversely, if participants encoded integrated epi-
sodes, the natural binding of features should preserve performance 
despite the additional complexity. As predicted, performance on 
experiment 2 was comparable to experiment 1 and all results repli-
cated (Fig. 2 and Supplementary Table 3), supporting the conclusion 
that participants relied on integrated episodic memories rather 
than separate feature memories to complete the task. To formally 
assess replicability, we pooled data across experiments 1 and 2 and 
tested for sample-specific deviations from the overall effects. No 
deviations from the pooled effects were observed across any sample 
(Supplementary Table 4), providing strong evidence for the reliability 
of these effects.
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Fig. 2 | People use episodic memory to make decisions in multifeature 
environments. a, Participants’ overall choice accuracy during the decision phase, 
shown for experiment 1 (samples A and B) and experiment 2. Chance performance 
is represented by the horizontal line. Large points represent group-level averages, 
with error bars representing the standard error of the mean. Small points 
represent average choice accuracy for individual participants. b, Participants’ rate 
of accurately recalling items seen in each round during the free recall portion of 
the memory phase. Recall rates were defined as the proportion of items that were 
accurately recalled relative to all items that were shown. Chance performance is 
represented by the horizontal line. Large points represent group-level averages, 
with error bars representing the standard error of the mean. Small points 
represent average recall rates for individual participants. c, Participants’ decision 
response times (log transformed) as a function of the number of memories that 
they accurately recalled on each round. Large lines represent group-level fits of a 
mixed-effects linear regression model, with fits to individuals plotted as smaller 
lines. Points represent group-level averages with uncertainty represented as 
standard error of the mean. Far right: fixed-effects and random-effects slopes (β) 
for regression model fits. Boxes represent the fixed-effects posterior distribution, 

with horizontal central lines representing the mean and boxes representing 
50%, 80% and 95% HDIs. Points represented the random-effects slopes for each 
participant. d, Left: the proportion of offers that were taken as a function of 
summed true offer value and recalled offer value. Offer values are z-scored to 
facilitate comparison. Points display raw choices, where 0 indicates a leave 
response and 1 indicates a take response. Inlays show the mixed effects slopes for 
each predictor, where boxes represent the fixed-effects posterior distribution 
with horizontal central lines representing the mean and boxes representing 50%, 
80% and 95% HDIs. Individual points in the inlays represent random slopes for 
each participant. Far right: results of comparing the true and recalled offer value 
models. Model fit was first assessed using tenfold cross-validation. The ELPD was 
then computed. Higher ELPD values indicate a higher likelihood of accurately 
predicting new data. Here, the difference in ELPD between models is shown  
such that positive values provide more support for the recalled offer value  
model. Uncertainty in the comparison is computed as in ref. 72, with error 
bars shown as the standard error of the difference. Statistics in all figures were 
computed with n = 67 (experiment 1, sample A), n = 50 (experiment 1, sample B) 
and n = 75 (experiment 2).
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Together, these results demonstrate that, when faced with choices 
that could be based on many different features, participants primarily 
used an episodic strategy that involved retrieving and computing over 
individual memories at choice time. This finding suggests that, despite 
the increased computational demands during decision-making, people 
prefer to maintain detailed episodic memories that can be flexibly 
accessed rather than attempting to track and update values for multiple 
features simultaneously. This preference may reflect the difficulty of 
implementing a feature-based strategy when faced with the curse of 
dimensionality, as suggested by previous theoretical work8.

Episodic memory enables flexible decision-making when it is 
unclear which details are important
Our findings so far demonstrate that people rely on episodic memory to 
make decisions in multifeature environments, in part because episodic 
memories provide a natural solution to the curse of dimensionality. 
However, this observation alone does not fully explain why episodic 
memory might be specifically advantageous for decision-making. To 
address this, we next hypothesized that episodic memory’s key benefit 
lies in its ability to enable flexible decisions when future task demands 
are uncertain—a common situation in the real world. This hypothesis 
predicts that people should shift away from using episodic memory 
when they can anticipate which features will be relevant for their 
upcoming decisions, as this foreknowledge would make a feature-based 
strategy more viable. To test this prediction directly, we next conducted 

an experiment where we manipulated whether participants knew in 
advance which features would be relevant for their decisions.

In experiment 3, we contrasted two conditions: one where partici-
pants learned which features would be relevant only at choice time (after 
encoding), and another where participants knew before encoding which 
features would be needed for their upcoming decisions (Fig. 1c). Specifi-
cally, in this new before condition, participants were told before encod-
ing that they would later receive offers about colour or category, but not 
both. This manipulation created conditions where the feature-based 
strategy is more feasible, as participants could safely ignore irrelevant 
features (for example, category when only colour offers would be made). 
This advantage was absent in the after condition, where feature rel-
evance remained uncertain during encoding. We predicted that people 
would primarily rely on an episodic strategy in the after condition, but 
would shift towards a feature-based strategy when feature relevance was 
known in advance. We again tested this prediction across two independ-
ent samples to ensure the replicability of our findings.

Participants responded accurately, primarily taking positive and 
leaving negative offers both during rounds in which feature relevance 
was communicated before encoding (sample A: M = 68.5% ± 2.9%, 
β0 = 0.86, 95% HDI 0.62 to 1.33; sample B: M = 71.7% ± 1.9%, β0 = 1.00, 
95% HDI 0.81 to 1.21) and after encoding (sample A: M = 59.7% ± 2.9%, 
β0 = 0.43, 95% HDI 0.20 to 0.66; sample B: M = 63.3% ± 2.2%, β0 = 0.62, 
95% HDI 0.41 to 0.83; Fig. 3a). Notably, participants chose more accu-
rately in the before condition (by an average of 8.8% and 8.4% in each 
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Fig. 3 | Episodic memory is primarily used for decisions when it is unclear 
what features are important. a, Participants’ choice accuracy during the 
decision phase, shown for experiment 3 (samples A and B). Decisions made when 
the future relevance of features was known at encoding (the before condition, in 
blue) are shown separately from those made when this information was unknown 
at encoding (the after condition, in orange). Large points represent group-
level averages, with error bars representing the standard error of the mean. 
Small points represent average choice accuracy for individual participants. 
b, Participants’ decision response times (log transformed) as a function of 
the number of memories they accurately recalled on each round for sample 
A (top) and sample B (bottom). Left: large lines represent the group-level fit 
of a mixed-effects regression, with fits to individuals plotted as smaller lines. 
Points represent group-level averages with standard error of the mean. Right: 
fixed-effects slopes and random-effects slopes (β) for regression model fits. 
Boxes represent the fixed-effects posterior distribution, with horizontal lines 
representing the mean and boxes representing 50%, 80% and 95% HDIs. Points 
represent random-effects slopes for each participant. c, The relationship 

between choices and offer value for sample A (top) and sample B (bottom). Left: 
the proportion of offers taken as a function of summed true offer value and 
recalled offer value for the before and after conditions. Offer values are z-scored 
to facilitate comparison. Points display raw choices, where 0 indicates a leave 
response and 1 indicates a take response. Inlays show the mixed-effects slopes for 
each predictor, where boxes represent the fixed-effects posterior distribution, 
with horizontal central lines representing the mean and boxes representing 50%, 
80% and 95% HDIs. Individual points in the inlays represent random slopes for 
each participant. Right: model comparison showing the difference in ELPD, with 
error bars representing the standard error of this difference. d, Participants’ rate 
of accurately recalling items seen in each round during the free recall portion 
of the memory phase. Chance performance is represented by the horizontal 
line. Large points represent group-level averages, with error bars representing 
the standard error of the mean. Small points represent average recall rates 
for individual participants. Statistics in all figures were computed with n = 50 
(experiment 3, sample A) and n = 84 (experiment 3, sample B).

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02383-3

sample, respectively), suggesting that there were clear benefits to 
performance when feature relevance was known during encoding. 
Importantly, however, performance in the after condition was on par 
with our prior experiments.

We next aimed to test our primary hypothesis. As predicted, in the 
after condition, participants took longer to make decisions when they 
recalled more memories (sample A: βnMemories = 0.08, 95% HDI 0.04 to 
0.12; sample B: βnMemories = 0.06, 95% HDI 0.02 to 0.11; Fig. 3b). Yet, we 
found little evidence for this relationship in the before condition, when 
participants were aware of which features they would need for their 
future decisions (sample A: βnMemories = 0.02, 95% HDI −0.04 to 0.07; 
Sample B: βnMemories = 0.03, 95% HDI −0.01 to 0.07). We then further 
examined the extent to which true and recalled offer value predicted 
participants’ choices in both conditions. We expected recalled offer 
value to be a better predictor of choices in the after condition, but not 
in the before condition, if participants retrieved episodes during deci-
sions made in the former but not the latter. In line with this prediction, 
recalled offer value better predicted held-out choices in the after condi-
tion but not in the before condition in both samples (Fig. 3c and Table 1; 
see Supplementary Table 2 for the performance of all models). In mod-
els pooling across samples, we further assessed the interaction between 
these conditions, finding evidence for a greater effect of recalled 
memories on decision times in the after condition relative to the  
before condition (βnMemories×Condition = 0.07, 95% HDI 0.04 to 0.10; 
Supplementary Table 5). Consistent with this finding, recalled offer 
value also provided comparably better predictions of held-out choices 
(βELPDrecalled−true×Condition = 0.06 , 95% HDI 0.03 to 0.10). These results 
indicate that participants primarily referenced individual episodes 
during decision-making when it was unclear at encoding which features 
would be needed for future decisions.

To better understand the source of these differences in strategy 
recruitment, we next examined participants’ performance on the 
memory phase. Specifically, while participants shifted away from 
using episodic memory when feature relevance was known before 
decision-making, it is unclear whether this effect emerged from 
changes in how experiences were initially encoded or from whether 
they were later accessed during decision-making. We reasoned that, 
if participants strategically modified their encoding based on known 
feature relevance, they should show impaired subsequent memory for 
individual episodes in the before condition, as they would be focused 
primarily on computing and maintaining feature-level values rather 
than encoding complete episodic memories. However, another pos-
sibility is that participants instead continued to encode episodic 
memories alongside precomputing feature values, consistent with 
evidence that these distinct systems often operate in parallel during 
learning22,25,36–38. In this case, we expected to see comparable memory 
performance between conditions, with task demands influencing 
whether these memories were later accessed at choice time rather than 
whether they were initially stored.

Across both samples, we found that participants maintained strong 
memories of the episodes encountered in each round regardless of 
condition. Participants accurately recalled individual items with no dif-
ferences in recall rates between conditions (sample A: βafter−before = −0.01, 
95% HDI −0.10 to 0.08; sample B: βafter−before = −0.01, 95% HDI −0.07 to 0.06; 
Fig. 3d and Table 2), and they further showed equally similar memory 
for the rewards associated with each item (sample A: βafter−before = −0.06, 
95% HDI −0.18 to 0.06; sample B: βafter−before = −0.05, 95% HDI −0.15 to 
0.05; Table 2 and Supplementary Fig. 3). These findings demonstrate 
that participants encoded complete episodic memories regardless of 
whether they knew which features would be relevant for future decisions.

Together, these results provide evidence that people selectively 
use episodic memory for decision-making when feature relevance is 
unknown during encoding. When participants were aware of which 
features would be important for decision-making before encoding, our 
results suggested that they no longer retrieved individual memories 

at choice time. This shift towards the feature-based strategy is sensi-
ble—it reduces computational demands at decision time by allowing 
direct access to precomputed feature values rather than requiring the 
retrieval and integration of multiple episodic memories. This approach 
led to improved performance on expected decisions because the epi-
sodic strategy can introduce noise (for example, through errors in 
memory retrieval), especially under time constraints when only a 
subset of memories might be accessible. Yet, we also found that par-
ticipants maintained detailed episodic memories in both conditions, 
suggesting that the differences we observed during decision-making 
emerged from how information was accessed at choice time rather than 
how it was initially encoded. We next aimed to determine whether this 
parallel maintenance of episodic memories provided its own adaptive 
benefits for decision-making.

Episodic memory maintains access to details if they become 
unexpectedly relevant
The results of experiment 3 suggest that, while participants appeared 
to rely on a feature-based strategy when feature relevance was known in 
advance, they still maintained detailed episodic memories. One predic-
tion that follows from this observation is that participants should still 
be able to use their episodic memories to maintain access to features 
they had initially deemed irrelevant in order to inform their decisions. 
By contrast, if participants abandoned episodic encoding entirely, they 
should struggle to access information about these irrelevant features.

We designed a fourth experiment to test this idea. In experiment 
4, after participants completed eight rounds in which the manipula-
tion introduced in experiment 3 was implemented, they were asked 
to complete an additional final round in which all possible offers were 
presented. Importantly, participants were shown these unexpected 
offers regardless of whether they had been told before the encoding 
phase of this final round that they would see only a subset of offers 
later on. This allowed us to examine performance when the final round 
was completed under the before condition for both expected and 
unexpected offers. By definition, all offers shown during the after 
condition were unexpected. We additionally modified the task to create 
conditions that would encourage greater reliance on the feature-based 
strategy. To accomplish this, we simplified the decision phase by pre-
senting only a single offer type per round (for example, ‘red’) before 
the final round. This modification meant that participants in the before 
condition needed to track only one specific feature value rather than 

Table 1 | Experiment 3 model comparison results showing 
fixed-effects estimates (β) with 95% HDIs and difference in 
ELPD between true and recalled offer value models

Condition Sample Model β (95% HDI) ELPDrecalled−true ± 
standard error

Before

A

True 1.17 
(0.76–1.65)

−4.74 ± 10.22

Recalled 1.02 
(0.77–1.31)

B

True 1.17 
(0.92–1.46)

12.26 ± 14.50

Recalled 1.27 
(1.02–1.55)

After

A

True 0.63 
(0.31–0.99)

13.32 ± 7.96

Recalled 0.91 
(0.58–1.28)

B

True 0.79 
(0.54–1.06)

44.50 ± 14.13

Recalled 1.29 
(1.03–1.59)
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multiple instances of the same feature (for example, just ‘red’ instead of 
all colours), making the feature-based strategy exceptionally efficient. 
We predicted that this change would lead participants to rely more 
heavily on the feature-based strategy in the before condition relative 
to experiment 3.

We further predicted that participants should show a specific 
pattern of choice behaviour if they maintained access to their episodic 
memories despite this increased commitment to the feature-based 
strategy. First, in response to unexpected final round offers completed 
under the before condition, we predicted that participants’ accuracy 
should drop relative to their performance on previous rounds. This 
is because they would no longer be able to rely on the feature-based 
strategy, which provided clear benefits to performance (improving 
accuracy by 8–9% in experiment 3 when feature relevance was known 
in advance). Second, we predicted that, to make these unexpected 
decisions, participants would instead need to fall back on using their 
episodic memories, leading to accuracy levels similar to their perfor-
mance in the after condition.

We first examined overall performance on rounds before the final 
round, finding that, while participants responded accurately in both 
conditions (before: M = 78.4% ± 2.0%, β0 = 1.57, 95% HDI 1.29 to 1.90; 
after: M = 55.2% ± 2.2%, β0 = 0.52, 95% HDI 0.32 to 0.74; Fig. 4a), they 
performed substantially better in the before condition relative to both 
samples in experiment three. Participants further showed equivalent 
memory performance across both conditions, with no differences 
in recall rates (βafter−before = −0.02, 95% HDI −0.07 to 0.04; Fig. 4b and 
Table 2) or in memory for associated rewards (βafter−before = −0.06, 95% 
HDI −0.14 to 0.02; Table 2 and Supplementary Fig. 3). These results 
suggest that, although participants were more capable at deciding 
in the before condition when they had to compute only the value of 
a single feature, they still separately maintained episodic memories.

We next asked whether this increase in performance in the before 
condition was due to participants’ greater reliance on the feature-based 
strategy. In line with this interpretation, we found that during the 
before condition there was virtually no evidence of a positive rela-
tionship between the number of memories recalled and decision 
response times (βnMemories = −0.02, 95% HDI −0.07 to 0.02; Fig. 4c), 
and participants’ choices were better predicted by the true offer 
value (βtrue = 2.74, 95% HDI 2.03 to 3.65) than the recalled offer value 
(βrecalled = 2.04, 95% HDI 1.49 to 2.75, ELPDrecalled−true −26.54 ± 12.69; Fig. 4d 
and Supplementary Table 2). Formal comparisons confirmed that, rela-
tive to experiment 3, in experiment 4 there was a weaker relationship 
between the number of recalled memories and response times in the 
before condition (βΔ = −0.05, 95% HDI −0.11 to −0.006), and the true 

offer value also exerted a stronger effect on choice (βΔ = 0.68, 95% HDI 
0.38 to 0.99). By contrast, in the after condition, participants showed 
longer decision response times when more memories were recalled 
(βnMemories = 0.09, 95% HDI 0.05 to 0.12). While participants’ choices in 
this condition were numerically more sensitive to the recalled offer 
value (βrecalled = 0.90, 95% HDI 0.59 to 1.27) than the true offer value 
(βtrue = 0.79, 95% HDI 0.52 to 1.10), both models were equally capable 
of predicting held-out choices (ELPDrecalled−true 1.33 ± 6.97; Fig. 4d). This 
equivalent model performance probably reflects the limited data avail-
able for cross-validation, as participants made substantially fewer deci-
sions per condition in this experiment compared with experiment 3.

Finally, we turned to test the primary question of this experi-
ment: whether in the final round participants maintained access to 
information about the features they were told would be irrelevant 
for future decisions. As predicted, participants who completed their 
final round in the before condition showed impaired performance on 
unexpected offers compared with their performance on prior rounds in 
this condition (M = 57.3% ± 3.7%, β0 = 0.14, 95% HDI 0.04 to 0.24; Fig. 4a), 
but maintained high accuracy on expected offers (M = 78.4% ± 5.8%, 
β0 = −0.07, 95% HDI −0.20 to 0.06). Critically, participants’ performance 
on unexpected offers matched that of the prior rounds in the after 
condition (β0 = −0.02, 95% HDI −0.11 to 0.07), suggesting they could 
successfully fall back on episodic memories when the feature-based 
strategy was insufficient. Surprisingly, we also found that participants 
who completed their final round in the after condition exceeded their 
prior performance in this condition (M = 66.7% ± 3.0, β0 = −0.13, 95% 
HDI −0.21 to −0.05). This improvement may stem from the increased 
variety of offer types shown in the final round, which provided par-
ticipants with more opportunities to make decisions about items they 
successfully remembered, whereas previous rounds with fewer offer 
types may have tested only items for which their memory was weaker.

The results of experiment 4 suggest that, even under conditions 
that strongly encouraged reliance on a feature-based strategy, par-
ticipants maintained detailed episodic memories that they could 
access when needed. While participants showed clear evidence of 
using feature-based computations in the before condition, they were 
still able to rely upon their episodic memories when faced with unex-
pected offers, performing comparably to the after condition. This 
pattern of results provides evidence that episodic memory may serve 
as a ‘backup’ to aid decisions when initially irrelevant features become 
unexpectedly relevant.

Episodic memory recall becomes more targeted under 
realistic decision demands
An intriguing aspect of our results so far is that, when participants used 
episodic memory for decision-making, their decision times scaled 
with the total number of memories they recalled in each round rather 
than just those relevant to each offer, suggesting that retrieval during 
decision-making was not preferentially biased towards relevant memo-
ries. Such a broad and unfocused memory search seems poorly adapted 
to real-world contexts where the space of possible memories is vast, 
raising the possibility that our relatively small memory sets may not 
have provided sufficient pressure for participants to develop efficient 
filtering strategies. In addition, our task’s simplified feature space, while 
allowing us to characterize episodic memory use in a controlled setting, 
remains far simpler than real-world experience, which can consist of a 
vast and nearly unlimited number of features. Although participants’ 
choice behaviour was largely unaltered by the addition of new features 
in experiment 2, this setting was still far from naturalistic, and it remains 
possible that further increases to feature dimensionality could reveal 
more subtle differences. It is also important to note that structuring 
our experiments as a series of rounds—where participants knew they 
would be tested on their memory after each decision phase—may have 
encouraged them to maintain episodic memories to improve memory 
test performance rather than for their utility for decision-making.

Table 2 | Memory performance across experiments 3 and 4

Experiment Sample Condition Recall rate 
± standard 
error

β0  
(95% HDI)

βreward  
(95% HDI)

3

A

Before 51.8% ± 3.2% 0.14 
(0.08–0.21)

0.55 
(0.48–0.62)

After 51.1% ± 2.9% 0.14 
(0.08–0.19)

0.49 
(0.39–0.57)

B

Before 61.8% ± 2.2% 0.24 
(0.20–0.29)

0.53 
(0.46–0.60)

After 61.2% ± 2.3% 0.24 
(0.19–0.28)

0.48 
(0.41–0.55)

4 –

Before 62.5% ± 1.9% 0.25 
(0.21–0.29)

0.54 
(0.49–0.59)

After 61.9% ± 1.9% 0.23 
(0.19–0.27)

0.48 
(0.42–0.54)

Recall rate shows the mean percentage of items recalled (± standard error). β0 represents the 
intercept of a model predicting recall performance relative to chance. βreward represents the 
slope of a model predicting the relationship between remembered and actual rewards.
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We designed a fifth experiment to investigate (1) whether our 
findings would translate to a more naturalistic setting in which these 
constraints were relaxed, and (2) whether this would encourage par-
ticipants to develop more selective retrieval strategies that improve 
decision-making. To address these questions, we used a larger memory 
set, naturalistic stimuli and a continuous format with a surprise mem-
ory test. This task followed the structure of a single extended round 
in our first experiment, where participants first encoded 21 episodes 
that each consisted of a naturalistic image associated with a binary (+1 
or −1) reward (Fig. 5a). Following a distractor phase identical to that 
used in our previous experiments, participants were then given 30 
offers about various features of the episodes (for example vehicles, 

birds and things that fly; Supplementary Fig. 4). Finally, participants 
completed a surprise memory test probing both free recall of the items 
and memory for the reward associated with each.

We predicted that participants would demonstrate the signa-
tures of episodic memory retrieval during decision-making that 
we established in our prior experiments. Given the larger memory 
pool, we further expected that the number of offer-relevant memo-
ries recalled by participants would emerge as a stronger predictor of 
response times than in previous experiments, reflecting more targeted 
retrieval processes.

Participants performed well on this task, achieving 70.6% ± 1.0% 
accuracy, which was well above chance (β0 = 1.02, 95% HDI 0.86 to 1.18; 
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Fig. 4 | Episodic memory is used to make choices about unexpected offers. 
a, Experiment 4 choice accuracy, separated by all rounds before the final round 
(labelled as previous (Prev.) rounds) and the final round in which participants 
were asked to make decisions about both offers they expected (in the before 
condition) as well as those that were unexpected (in both conditions with n = 65 
in the before condition and n = 60 in the after condition). Large points represent 
group-level averages, with error bars representing the standard error of the mean. 
Small points represent average choice accuracy for individual participants. By 
design, only a single offer was expected in the before condition. b, Participants’ 
rate of accurately recalling items seen in each round of experiment 4 during the 
free recall portion of the memory phase. Chance performance is represented by 
the horizontal line. Large points represent group-level averages, with error bars 
representing the standard error of the mean. Small points represent average recall 
rates for individual participants. c, Experiment 4 participants’ decision response 
times (log transformed) as a function of the number of memories they accurately 
recalled on each round. Left: large lines represent the group-level fit of a mixed-

effects regression, with fits to individuals plotted as smaller lines. Points represent 
group-level averages with standard error of the mean. Right: fixed-effects slopes 
and random-effects slopes for regression model fits. Boxes represent the fixed-
effects posterior distribution, with horizontal lines representing the mean and 
boxes representing 50%, 80% and 95% HDIs. Points represent random-effects 
slopes for each participant. d, Left: the proportion of offers taken as a function 
of summed true offer value and recalled offer value for the before and after 
conditions. Offer values are z-scored to facilitate comparison. Points display 
raw choices, where 0 indicates a leave response and 1 indicates a take response. 
Inlays show the mixed-effects slopes for each predictor, where boxes represent 
the fixed-effects posterior distribution with horizontal central lines representing 
the mean and boxes representing 50%, 80% and 95% HDIs. Individual points in the 
inlays represent random slopes for each participant. Right: model comparison 
showing the difference in ELPD, with error bars representing the standard error 
of this difference. Unless otherwise noted, statistics in all figures were computed 
with n = 125.
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Fig. 5b). On average, participants recalled 12 ± 0.5 items and demon-
strated excellent memory for the rewards associated with each item 
(Maccuracy = 77.9% ± 1.4%; β0 = 0.78, 95% HDI 0.74 to 0.82; Fig. 5c). These 
results show that participants successfully adapted to the increased 
complexity of this task, maintaining both effective decision-making 
and memory recall.

Next, we examined participants’ response times and choice behav-
iour to test our primary hypotheses. As predicted, participants took 
longer to make decisions when they recalled more memories that were 
relevant to each offer (βnMemories = 0.03, 95% HDI 0.01 to 0.05; Fig. 5d), 
suggesting that their retrievals were guided by a more selective search 
through memory. Turning to choice behaviour, we found that partici-
pants’ decisions were sensitive to both true offer value (βtrue = 1.03, 95% 
HDI 0.84 to 1.24) and recalled offer value (βrecalled = 1.01, 95% HDI 0.81 to 
1.21), consistent with our prior experiments. However, recalled offer 
value provided a negligible out-of-sample predictive advantage over 
true offer value (ELPDrecalled−true 4.25 ± 2.66; Supplementary Fig. 4), 

probably because participants’ highly accurate memory for rewards 
left little room for distortions in value to influence decision-making.

Interestingly, we also found that participants took longer to make 
choices when they recalled more memories overall (βnMemories = 0.04, 95% 
HDI 0.02 to 0.06; Fig. 5d), similar to our previous experiments. The per-
sistence of this effect reflects, at least in part, the fact that participants 
who recalled more offer-relevant memories also tended to recall more 
memories in general (r = 0.41; βnMemories = 0.74, 95% HDI 0.65 to 0.82). 
However, a related possibility is that individual differences in memory 
search strategies may drive these relationships, with some participants 
engaging in broad, less selective retrieval that is more influenced by 
offer-irrelevant memories, while others use a more targeted search 
process focused primarily on retrieving offer-relevant memories.

Our next aim was to investigate this idea. We predicted that task 
performance should be related to the selectivity of retrieval during 
choice. We first explored this prediction computationally by simu-
lating agents that varied in how selectively they sampled memories 
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Fig. 5 | Realistic decision demands encourage participants to develop more 
efficient retrieval strategies. a, Design of experiment 5. Top: participants 
completed a single, long round of each of the four phases used in prior 
experiments. During encoding, participants were shown 21 naturalistic images 
with a binary reward (+1 or −1) represented by a green or red border. After the 
distractor phase, they were asked to make decisions about 30 offers about these 
episodes, which were then followed by a two-part memory test for free recall 
and the reward associated with each item. Bottom: example features used for 
the offers in experiment 5 with the images that matched each feature denoted 
in black. Each offer had between 1 and 12 matching images. See Supplementary 
Fig. 4 for all images and offers provided to participants. b, Experiment 5 
choice accuracy. Large points represent group-level averages, with error bars 
representing the standard error of the mean. Small points represent average 
choice accuracy for individual participants. c, Recall performance in experiment 
5. Left: participants’ proportion of the 21 possible items that were accurately 
recalled during the free recall phase. Right: participants’ accuracy on the two-
alternative forced choice reward recall test. Large points represent group-level 
averages with error bars representing standard error of the mean. Small points 
represent average recall rates for individual participants. d, Experiment 5 
participants’ decision response times (log transformed) as a function of the 
number of offer-relevant memories (left) and overall total memories (right) that 
they recalled. Large lines represented the group-level fit of regression models, 
with fits to individual participants plotted as smaller lines. Points represent 

group-level averages across ten bins with equal trials in each and standard error 
of the mean. Note that, because only a single memory test was completed by each 
participant, the total number of memories was a between-participants measure 
in this experiment. e, Results from the behaviour of simulated agents completing 
experiment 5. On each offer, agents sample individual items and their associated 
reward without replacement, controlled by two parameters. The sampling bias (τ) 
determines the randomness of this sampling such that larger values bias sampling 
towards offer-relevant items, and a bias of zero is fully random. The probability of 
stopping (ϕ) sets a constant probability that recall will halt after each sample and 
controls the overall number of memories that are sampled within the task time 
limit. Agents with lower τ and higher ϕ are less accurate, and the number of offer-
irrelevant memories during each decision explains a larger proportion of variance 
in response times when recall is more random. See Methods for more details.  
f, The interaction effect of the number of offer-irrelevant memories and choice 
accuracy on decision response times. Participants who are less accurate overall 
tend to have response times that are more strongly related to their number of 
irrelevant memories. The dark line represents the marginal posterior mean of this 
effect, with 50%, 80% and 95% HDIs. g, Fixed-effects slopes for regression models 
predicting the response times of median-split low (n = 30) and high (n = 33) 
accuracy groups from their number of offer-relevant (left) and overall total (right) 
memories. The horizontal line within each box represents the posterior mean and 
boxes represent 50%, 80% and 95% HDIs. Unless otherwise noted, statistics in all 
figures were computed with n = 63.
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during decision-making. Agents that sampled more broadly and ter-
minated search earlier showed both poorer task performance and 
response times that were more strongly driven by memories irrelevant 
to the current offer (Fig. 5e). Consistent with this result, we found that 
lower-performing participants’ response times were more strongly 
related to the number of offer-irrelevant memories they recalled 
(βnMemories×Accuracy = −0.02, 95% HDI −0.04 to −0.002; Fig. 5f). This finding 
suggests that participants who performed worse on the task engaged in 
less selective memory retrieval, as their decision times were dispropor-
tionately influenced by memories that were not useful for the current 
choice. To examine these individual differences more closely, we further 
split participants into low- and high-performing groups and directly 
compared whether total memories or offer-relevant memories better 
predicted response times in each group. Low-performing participants 
took longer to make decisions when they had more memories overall 
(βnMemories = 0.08, 95% HDI 0.03 to 0.12), but their response times were 
not reliably related to the quantity of their offer-relevant memories 
(βnMemories = 0.01, 95% HDI −0.03 to 0.05). As expected, high-performing 
participants showed the opposite pattern: they took longer to respond 
when they had more offer-relevant memories (βnMemories = 0.04, 95% HDI 
0.01 to 0.07) but their response times showed no reliable relationship 
with their overall pool of memories (βnMemories = 0.02, 95% HDI −0.01 
to 0.05). Indeed, offer-relevant memories better predicted response 
times out-of-sample in high-performers (ELPDrelevant−total = 7.55 ± 3.34), 
confirming that these participants likely engaged in more targeted 
memory search during decision-making, but both memory measures 
were equally predictive for low-performers (ELPDrelevant−total −0.08 ± 2.7). 
These findings confirm that more selective memory retrieval is associ-
ated with better decision performance, supporting the adaptive value 
of targeted memory search during decision-making.

Together, the results of experiment 5 demonstrate that, when 
memory demands more closely approximate real-world complex-
ity—through a larger memory pool, naturalistic stimuli and a surprise 
memory test—participants continued to rely on episodic memory for 
flexible decision-making. Yet, they differed in how they accessed their 
memories, and the ability to engage in targeted memory retrieval rather 
than broadly searching through all available memories distinguished 
better from worse decision-makers. These results provide evidence 
that, as memory demands approach real-world complexity, efficient 
memory search becomes a crucial determinant of decision quality.

Controlling for individual differences in effort
An alternative explanation for the relationship between memory 
retrieval and response times that we have uncovered is that individual 
differences in task engagement or effort may act as a confounding third 
variable. Under this account, more careful responding could lead to 
improved performance on both the decision and memory phases of our 
tasks, creating a spurious association between these measures rather 
than reflecting genuine episodic memory use during decision-making.

We conducted a series of complementary analyses across each of 
our experiments to rule out this possibility. First, we predicted that, if 
individual differences in effort were driving these effects, we should 
observe a classic speed–accuracy trade-off during decision-making. 
Contrary to this prediction, we found little evidence for a consistent 
relationship between response speed and accuracy across experi-
ments (Supplementary Table 6). We next used performance during 
the distractor phase as a proxy for effort. We reasoned that, if task 
engagement were the common cause underlying both slower response 
times and better memory performance, participants with superior dis-
tractor task performance should exhibit both patterns. To test for this 
possibility, we included distractor performance as a covariate in our 
analyses. This did not meaningfully alter the strength of the observed 
relationship between recalled memories and response times in any 
experiment (Supplementary Table 7). Lastly, we decomposed each 
participant’s number of recalled memories per round into within- and 

between-participant components to isolate effects occurring within 
individuals from those driven by individual differences (note that this 
was not possible in experiment 5, which did not use a round-based 
structure). Within-participant effects remained largely consistent with 
our original analyses, with minor differences in the strength of effects in 
experiments 1B (βnMemories = 0.05, 95% HDI −0.002 to 0.10, 90% HDI 0.005 
to 0.09) and 4 (after condition: βnMemories = 0.05, 95%HDI −0.005 to 0.09, 
90% HDI 0.003 to 0.09; Supplementary Table 8). Furthermore, when 
data were pooled across comparable experiments to assess replicabil-
ity, the pooled mean within-participant effect remained robust, with no 
substantial deviations across experiments (Supplementary Table 9).

Together, these analyses provide strong converging evidence 
against an effort-based explanation for our findings, supporting the 
conclusion that participants used episodic memory during their deci-
sions rather than exhibiting patterns driven by individual differences 
in task engagement.

Discussion
Our findings indicate that people flexibly use episodic memory 
to guide their choices in multifeature environments, particularly 
when future task demands are uncertain. When faced with multiple 
decision-relevant features (experiment 1), participants relied primarily 
on episodic memories to compute offer values during decision-making, 
as indicated by both their response times and choice patterns. This 
strategy persisted even as feature complexity increased, suggesting 
that participants stored experiences as integrated episodes rather than 
separate feature representations (experiment 2). When given advance 
knowledge of feature relevance (experiment 3), participants shifted 
towards a more computationally efficient feature-based strategy that 
involved precomputing values during encoding. Yet, despite this shift 
in strategy, participants continued to encode episodic memories, a 
parallel operation that proved useful when knowledge about previously 
irrelevant information was needed for decision-making (experiment 4). 
Finally, in an environment designed to induce pressure for participants 
to more efficiently recall their memories during decision-making, those 
who retrieved more selectively made better decisions (experiment 5). 
Overall, these results demonstrate that episodic memory serves as an 
adaptive solution to decision-making under uncertainty in complex 
environments, allowing us to flexibly repurpose our memories accord-
ing to the demands of the present.

This work connects at least two established but largely separate 
literatures on memory and choice. First, a number of studies focused 
on decision-making have explored the ways in which individual experi-
ences may be recalled for choice27,39–42. This research, typically called 
‘decision by sampling’, proposes that decision variables may be con-
structed by drawing samples from memory and explains a number of 
ways in which peoples’ choice behaviour differs when information is 
learned from experience rather than instructed descriptions43. Much 
of this work has emphasized episodic memory’s value as a store for 
single experiences, which is a useful property when data are sparse 
and summary statistics cannot be reliably constructed, such as at the 
beginning of learning or following changes in the environment7,25. 
Our findings address a complementary computational advantage: 
episodic memory’s ability to store experiences in high fidelity across 
multiple features simultaneously. Second, other work has proposed 
that episodic memory plays a critical role in our ability to infer new 
information about the world by allowing the formation of new links 
between past experiences44–46. An important but underappreciated 
part of this role is episodic memory’s ability to store multiple features 
of experience, because each feature provides another opportunity to 
relate past events with one another. Here, we connect these ideas by 
proposing that features of episodes may enable the on-the-fly forma-
tion of new decision variables when they are required for a choice.

Our findings add to a substantial body of research which has found 
that the brain contains multiple memory systems that can operate 
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independently yet interact continuously11,26,37,38,47,48, with task demands 
determining which is ultimately recruited for decision-making25,49,50. 
Our results suggest that this parallel operation is adaptive—while incre-
mental learning can efficiently track relevant statistics when future 
demands are known, episodic memory may serve as a crucial ‘backup’ 
system by preserving detailed records of experiences. This is indicated 
by participants’ ability to successfully encode detailed episodes in 
experiments 3 and 4 even while engaging in the feature-based strategy, 
and by their ability to use these memories to support unexpected 
decisions when incremental estimates were poorly calibrated. These 
findings align with recent computational work9 suggesting that epi-
sodic memory may complement incrementally learned summaries by 
enabling the computation of new task-relevant statistics when unex-
pected events occur. Further research has demonstrated that episodic 
encoding is enhanced for schema-incongruent or surprising events51,52, 
which suggests that creating detailed memories is most critical when 
current predictions fail. However, our results indicate that some level of 
detailed episodic encoding may occur for most experiences, providing 
a baseline level of flexibility for future behaviour that may be further 
enhanced by surprise or prediction error signals53,54.

Separately, our experiments uncovered systematic differences in 
how memory search strategies adapt to task demands and distinguish 
effective from ineffective decision-makers. In experiments 1–4, we 
found that participants’ decision times scaled with their total number 
of memories in each round rather than just those relevant to each 
offer, suggesting relatively broad retrieval from memory. However, in 
experiment 5, we found that better-performing participants were char-
acterized by their ability to target retrieval towards decision-relevant 
memories. These findings suggest that, while some intrusion of irrel-
evant memories during retrieval is inevitable, as assumed by most 
computational models of free recall30, people also use more efficient 
search strategies to improve decision-making. Future work examining 
how people develop selective retrieval strategies will be important 
to understand what factors promote more efficient memory search 
during decision-making.

A related next step lies in characterizing how the various organi-
zational principles of episodic memory guide choice. Classic compu-
tational models of memory retrieval have formalized how memories 
are naturally organized and accessed according to their temporal 
proximity and semantic relationships55–57. This work suggests that, 
when we retrieve a memory, it automatically triggers the recall of 
other memories that, for instance, occurred nearby in time or share 
meaningful features. Indeed, participants in our experiments showed a 
clear tendency to consecutively recall items that were presented close 
together during encoding (Supplementary Fig. 3). Such organizational 
principles are probably central to memory-guided decision-making, 
as indicated by findings demonstrating that choices are systematically 
influenced by temporally proximate experiences22, by the context pre-
sent during both encoding23 and decision-making23,58, and by semantic 
similarity between experiences27,59. While our results show that people 
can effectively use episodic memories for flexible decision-making, 
they do not reveal the specific mechanisms by which memories are 
accessed. Our behavioural measures were designed to be predicted 
by basic properties of episodic memory recall and so remain agnostic 
towards any particular model or sampling algorithm. Indeed, these 
findings could theoretically arise from many different memory sam-
pling strategies—from random sampling to more structured retrieval 
guided by these organizational principles. While we developed our 
toy process model to demonstrate that basic probabilistic sampling 
of memories can reproduce observed behaviour, it is likely that it does 
not capture the sophisticated retrieval mechanisms that probably 
govern real-world memory-guided decisions. Applying formal memory 
models to value-based choice could provide a more precise account 
of how memories are actually accessed during decision-making, while 
potentially revealing new principles about how memory organization 

shapes adaptive behaviour. Doing so will require not only experimental 
paradigms that more closely approximate real-world decision-making, 
where people draw upon vast numbers of feature-rich experiences 
across extended timescales, but also methodology to measure direct 
memory access during decision-making itself.

Related to this point, a critical feature of our experimental design 
was that we collected memory measures immediately following par-
ticipants’ choices rather than during decision-making. We did not ask 
participants to directly recall items during their decisions because 
our aim was to assess the strategy participants relied upon without 
instructing them to use any strategy in particular, and we reasoned that 
this approach may bias them towards using their episodic memories 
for choice. One way to circumvent this limitation would be to record 
neural activity during the decision phase. For example, past approaches 
using magnetoencephalography have successfully decoded both the 
recall of individual episodes during standard memory tasks60,61 and the 
rapid replay of sequences of memories during decision-making62–64. 
One possible future direction would be to similarly attempt to decode 
memory access during the decision phase of our task design. In addi-
tion to providing direct evidence for the recall of individual memories 
during choice, taking such an approach may provide multiple insights 
into the ways in which value is computed from memories, for instance 
by testing hypotheses about the number, temporal order and semantic 
relationships between recalled memories.

There are also several other limitations of our experimental 
approach. First, we assumed that episodes consist of perfect recol-
lections of experienced details, when in reality these details are often 
substantially compressed and abstracted65–68. This simplification may 
not capture how episodic memory actually operates in naturalistic 
settings, where imperfect and reconstructed details may alter its rela-
tive advantages over incremental learning. Separately, our design 
lacked explicit behavioural measures during encoding that may have 
revealed more subtle differences in strategy use, particularly because 
the feature-based strategy should impose greater demands during 
encoding while the episodic strategy should be more demanding dur-
ing retrieval. Future work could address this limitation by manipulating 
cognitive load at each of these timepoints, or by using neuroimaging 
to predict subsequent recall from neural activity at encoding time. 
Finally, while overall performance was not altered by increasing feature 
complexity in experiments 2 and 5, suggesting that participants relied 
on integrated episodes rather than separate feature stores throughout 
our tasks, it remains possible that people differ in the extent to which 
they use either of these representations during choice. This possibil-
ity could be addressed by future experiments that manipulate feature 
complexity within rather than across individuals.

In conclusion, our results demonstrate that episodic memory plays 
an important role in enabling flexible decision-making when future task 
demands are unknown. By maintaining detailed representations of indi-
vidual experiences, episodic memory allows us to access details from 
our past if they become relevant for present decisions. This flexibility 
comes at the cost of increased computational demands during choice, 
leading people to adopt more efficient strategies based on precom-
puting decision variables when possible. Recent work on the timing 
of memory-based decisions supports this view, showing that people 
proactively compute value from memory whenever circumstances 
allow them to anticipate future choice requirements69. Together, these 
findings suggest that one reason why we maintain detailed memories 
of the past is to help us flexibly adapt to an uncertain future.

Methods
Experimental procedure
Unless otherwise noted, all procedures were identical across experi-
ments, and differences between experiments are summarized in Table 3. 
Participants completed a four-part task over the course of a single online 
session designed to measure whether people access individual episodes 
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to make decisions based on multiple features of past experiences 
(Fig. 1a). Completing all four parts (a round) took approximately 5 min, 
and participants completed five (experiment 1), seven (experiment 2) or 
eight (experiments 3 and 4) rounds in total. In experiment 5, participants 
completed a single round that took approximately 20 min.

Stimuli. In experiments 1, 3 and 4, stimuli varied across two features: 
colour (red, yellow, blue or green) and category (animal, object, food 
or scene). In experiment 2, stimuli instead varied across four binary 
features: texture (with or without a pattern), location (aquatic or not 
aquatic), animacy (animal or object) and size (larger or smaller than 
a microwave). In experiments 1–4, a total of 16 possible items were 
used, with a subset of 6 pseudo-randomly sampled to be used in each 
round. All two-feature items and an example subset (highlighted in 
red) are shown in Fig. 1b. As demonstrated in this figure, the six items 
used in each round were selected such that there were always three 
items with a specific instantiation of each feature (for example, three 
green items and three animals), two of another type (for example, two 
blue items and two objects) and one of another type (for example, 
one food and one yellow). Items could repeat across rounds, and the 
number of repetitions per item was pseudo-randomly balanced within 
each session. Items repeated between one and four times in a single 
session depending on the experiment. Each time an item appeared, it 
was associated with a different reward. In experiment 5, stimuli were 
naturalistic images with many possible features and 21 images were 
shown a single time each.

Encoding phase. In the first part of a round, participants com-
pleted a task designed to allow them to encode individual items and 
an associated reward (which we refer to throughout as an episode). 
Each item was presented on the screen for 1 s, after which its reward 
appeared alongside it for another 6 s. An item’s associated reward was a 
pseudo-randomly sampled integer (excluding 0) between either −9 and 
9 (experiment 1), between −2 and 2 (experiments 2, 3 and 4) or between 
−1 and 1 (experiment 5). In experiment 5, to aid future recall, the reward 
was presented using a coloured border around the presented image 
(green for 1 and red for −1). To create a balance of future offer values in 
each round, the reward assignment algorithm ensured that (1) an equal 
balance of positive and negative reward was used in each round, (2) no 
feature dimension (for example, blue or object) had a summed value of 
exactly zero and that (3) at least one feature dimension had a positive 
summed value and at least one had a negative total value. Immediately 
after viewing the episode, participants completed an attention check 
consisting of the item alongside two options, either the associated 
reward that was just shown or another randomly selected reward. They 
had 3 s to respond. Each episode was viewed only once, for a total of 
six trials per round.

Distractor phase. Immediately following the encoding task, partici-
pants completed a 90-s distractor task to prevent active rehearsal of the 

episodes. This distractor consisted of a two-back working memory task 
in which participants were shown one of several letters in sequence. 
Participants were asked to identify whether the current letter matched 
the one presented two steps earlier.

Decision phase. Immediately following the distractor task, partici-
pants then made several decisions based on the features of each item 
(six decisions: experiment 1 (sample A); four decisions: experiment 2; 
three decisions: experiments 1 (sample B) and 3; one decision: experi-
ment 4; 30 decisions: experiment 5). Each decision consisted of an offer 
in which a single feature (for example, animal) was displayed on the 
screen, and participants were asked to either take or leave this offer. 
Participants were informed that the value of each offer consisted of 
the sum of each episode that was described by the offer (for example, 
the value of the animal offer would be the sum of the rewards associ-
ated with all animals seen during encoding) and that they should take 
positive offers and leave negative offers. Participants had 7.5 s to make 
each decision.

Memory phase. Finally, immediately after the decision task, we 
assessed participants’ memory for the episodes in two ways. In experi-
ments 1–4, participants were asked to freely recall the items that they 
saw in each round. They were provided with six empty text boxes and 
were told to enter the items in the order in which they remembered 
them. Participants were further told to halt their recall and move on to 
the next task if they could no longer remember any items. Following the 
free recall portion, participants were shown each item and were asked 
to provide their memory for the reward that was associated with each 
item. In experiment 5, free recall proceeded similarly to the previous 
experiments except that participants were given a single large box 
to enter their responses. Value recall in experiment 5 consisted of a 
two-alternative forced choice between each image with either a red or 
green border, and participants were instructed to choose the option 
that matched what they saw earlier in the task.

Feature uncertainty manipulation (experiments 3 and 4). To deter-
mine whether episodic memory is used preferentially when it is unclear 
which features should be prioritized during encoding, we manipulated 
whether information was provided to participants about upcoming 
choices in experiments 3 and 4. In these experiments, participants 
were told either before the encoding phase (four rounds) or after the 
distractor phase (four rounds) that they would be shown offers of 
only one feature type (either colour or category) during the decision 
phase. The order in which participants were shown each condition 
was counterbalanced.

Surprise choice manipulation (experiment 4). We aimed to further 
test whether participants had access to features that were made irrel-
evant by the feature uncertainty manipulation, as we predicted that 
one hallmark of using episodic memory for decision-making would 

Table 3 | Summary of experimental differences

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Number of rounds 5 7 8 9 1

Number of stimulus features 2: colour and category 4: texture, location, animacy 
and size

2: colour and category 2: colour and category 30: unspecified

Reward range −9 to 9 −2 to 2 -2 to 2 −2 to 2 −1 to 1

Decisions per round Sample A: 6; sample 
B: 3

4 Sample A: 3; sample 
B: 3

1 (6 in final round) 30

Feature uncertainty 
manipulation

No No Yes Yes No

Surprise choice 
manipulation

No No No Yes No
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be the availability of all of the features of an event at decision time. To 
accomplish this, we added a final round to Experiment 4 in which par-
ticipants were informed—unexpectedly—that, regardless of whether 
they had previously been told they would receive offers concerning 
only a single feature, they would now be required to make decisions 
about all possible offers.

Task instructions and practice. Across experiments 1–4, participants 
were told a version of the following at the beginning of the experiment, 
with slight variations depending on the experimental condition. For 
brevity, we have left out aspects of the instructions related to button 
presses and task timing:

Today you will be playing a game where your job is to earn as many 
points as possible. You will first see several images and will learn 
how many points each image is worth. You will then be asked to 
make choices based on what you have learned in order to earn 
points. The game will unfold over several different phases, and 
you will complete multiple rounds of these phases. Each round is 
independent of the others, so what you learn in one round does 
not influence the other rounds at all.

In the first phase, you will be shown several images, one at a time, 
alongside how many points it is worth. Each image can be worth 
either a positive or negative number of points. After viewing an 
image and its value, you will be asked to identify the number of 
points it was worth. You will be shown two numbers on either the 
left or right side of the screen. One of these numbers will be the 
image’s value, while the other will not. You will see each image 
and its point value only once in a round.

You will need to use the value of each image to make choices. You 
will be given an offer on the screen and will be asked whether you 
would like to take or leave the offer. You should take an offer if you 
think it will allow you to earn more points, and you should leave 
an offer if you think it will cause you to lose points. All offers will 
consist of different features of the images you saw. Each offer is 
worth the sum of the point values of all images that match that 
feature.

In between the two phases you just learned about, you will 
complete another brief task. During this phase, you will see a 
sequence of letters presented one at a time. Your job is to deter-
mine if the letter on the screen matches the letter that appeared 
two letters before.

The last phase is a brief memory test where you will be asked to 
recall information about the items and point values that you 
learned about in the first phase.

The instructions for experiment 5 used this same language but 
did not include any information about rounds or the memory test.

During the instructions, participants were provided with two 
practice trials for each phase except the memory phase. Partici-
pants were required to achieve 100% on a multiple choice compre-
hension test with ten questions about the instructions in order to 
proceed with the study. They were further required to repeat all 
instructions related to any missed questions until they answered 
correctly. If they missed more than three questions, they were 
required to repeat the entire sequence of instructions, including  
practice trials.

Participants. All experiments were approved by the New York Uni-
versity Institutional Review Board, and all participants provided 
informed consent before their participation. Participants with normal 

or corrected-to-normal vision were recruited from the New York Uni-
versity participant pool. Compensation was provided in the form 
of course credit. Participants were excluded if they indicated on a 
post-task questionnaire that they wrote any information down during 
the study or if they either failed to answer or provided nonsensical 
responses to the post-task questions. To incentivize honest responses 
on this questionnaire, participants were told that they would receive 
compensation regardless of their answers.

Experiment 1 (sample A), 83 participants were recruited and 16 were 
excluded, leading to a final sample of 67 participants (Mage = 19.05 ± 0.15; 
23 males, 42 females, 2 declined to say). For experiment 1 (sample B), 
58 participants were recruited and 8 were excluded, leading to a final 
sample of 50 participants (Mage = 18.76 ± 0.2; 14 males, 36 females). For 
experiment 2, 90 participants were recruited and 15 were excluded, 
leading to a final sample of 75 participants (Mage = 18.89 ± 0.17; 17 males, 
56 females, 2 declined to say). For experiment 3 (sample A), 61 par-
ticipants were recruited and 11 were excluded, leading to a final sam-
ple of 50 participants (Mage = 18.93 ± 0.18; 13 males, 37 females). For 
experiment 3 (sample B), 97 participants were recruited and 13 were 
excluded, leading to a final sample of 84 participants (Mage = 18.81 ± 0.14; 
25 males, 58 females, 1 declined to say). For experiment 4, 139 partici-
pants were recruited and 14 were excluded, leading to a final sample 
of 125 (Mage = 19.14 ± 0.12; 42 males, 83 females). We recruited a larger 
sample for experiment 4 because each participant could complete only 
one of the before/after conditions during the final ‘surprise’ round, 
and we aimed to have roughly comparable numbers for each condi-
tion to our prior experiments. For experiment 5, 72 participants were 
recruited and 9 were excluded, leading to a final sample of 63 partici-
pants (Mage = 18.78 ± 0.16; 17 males, 46 females). We determined our 
sample sizes based on effects measured in an initial pilot study, which 
is reported in Supplementary Fig. 5.

Model simulations
We formalized the episodic-based decision strategy using a toy process 
model. This model makes decisions by sequentially sampling indi-
vidual memories and their associated rewards without replacement. 
Memories each consist of a binary feature vector and reward. When 
given an offer, the model first samples a memory i with probability 
computed using a softmax function with sampling bias parameter τ. 
The logit is defined as

logiti = {
τ ifmemory i is relevant to current decision

0 ifmemory i is irrelevant
.

The sampling probability for each memory is then

pi =
exp(logiti)

∑ j = 1N exp(logitj)
.

This creates a sampling bias where relevant memories have probability 
exp(τ)

∑j exp(logitj)
 while irrelevant memories have probability 1

∑j exp(logitj)
. When 

τ = 0, all memories are sampled uniformly. As τ increases, the model 
increasingly favours sampling memories that share features with the 
current offer.

After sampling a memory, the model adds its reward to a running 
sum and increments the elapsed decision time by a fixed recall time. The 
model then decides whether to continue sampling using a geometric 
stopping rule: at each step, sampling terminates with probability ϕ. 
If sampling continues, the model selects another memory from the 
remaining unsampled memories, with probabilities renormalized over 
the available set. The recalled value for memory i includes Gaussian 
noise to mimic imprecise recall of reward:

vi = ri + ϵi,
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where ri is the true reward and ϵi ∼ 𝒩𝒩(0,σ2). The total recalled value 
is then

Vrecalled = ∑
i∈ sampled

vi.

Sampling terminates when either (1) the stopping criterion is met, 
(2) all memories have been sampled or (3) maximum decision time is 
reached. The total decision time is then

RT = nsampled × trecall,

where trecall is a constant. Finally, once sampling has terminated, the 
model makes a binary choice based on whether the total recalled value 
is positive:

Choice =

⎧⎪⎪
⎨⎪⎪
⎩

1 if Vrecalled > 0 andat least

1 relevantmemorywas sampled

Bernoulli (0.5) if no relevantmemories

were sampled

.

We also formalized the feature-based strategy using a model that 
precomputes the value of each feature during encoding by summing 
the rewards associated with all items sharing that feature. During the 
decision phase, the model simply retrieves the cached value for the 
offered feature and makes a choice according to a logistic choice rule 
with inverse temperature β. This strategy predicts constant decision 
times based on only on a non-retrieval time ρ because only a single 
cached value must be referenced on each choice.

To first illustrate the behaviours that allowed us to distinguish 
between episodic and feature-based decision strategies in Fig. 1c, we 
simulated each model on the same basic structure used with human 
participants in experiments 1–4 (N = 6 memories). We ran 5,000 simu-
lations for each model with the following values for each parameter. 
For the episodic model these were: recall time trecall = 1, reward recall 
noise σ = 0.5, stopping probability ϕ = 0.1, sampling bias τ = 0 and a 
maximum decision time of 7.5 s. In these simulations, trecall exerts no 
influence over recall because its product with the number of possible 
sampled memories cannot exceed the maximum decision time. For 
the feature-based model this was: non-retrieval time ρ = 1.5 s and 
inverse temperature β = 5.0. We chose these parameters purely to 
illustrate (1) the expected positive relationship between decision 
response times and the number of sampled memories and (2) that 
recalled offer value should differ from true offer value as a func-
tion of the sampled memories and distortions in reward recall in the 
episodic memory model. In general, these properties are expected 
under any values of ϕ and σ large enough to create variation in recalls 
across decisions.

We also simulated episodic memory agents completing experi-
ment 5 (Fig. 5e) by generating N = 21 memories with features chosen to 
create a variety of offers with different numbers of relevant memories. 
Performance was then simulated across several parameter combina-
tions (sampling bias τ ∈ {0, 1, 2.5, 5, 10} and probability of stopping 
pstop ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}), with 5,000 independent 
agents for each combination. We used an upper bound of 7.5 s for 
each decision. The reward recall noise σ was fixed to a negligible value 
(0.001) to more clearly assess the impacts of sampling bias and the 
probability of stopping on choice accuracy. We also fixed the recall 
time trecall to 1 in order to ensure that agents with minimal stopping 
tendencies (low ϕ) could not exhaustively search all available memo-
ries, thereby preserving the variance in retrievals necessary to create 
individual differences in performance. Because decision response 
times are determined by the overall number of memories recalled, 
we focused on assessing how each parameter combination impacts 

the relationship between the number of sampled memories that were 
irrelevant to each offer and accuracy. We calculated the amount of 
variance in response times explained by irrelevant memories across 
all of the agents with each combination of parameters.

Statistical analysis
All data were analysed with regression models estimated using hier-
archical Bayesian inference such that group-level priors were used 
to regularize participant-level estimates unless otherwise specified. 
Predictors were specified as fixed effects alongside random slopes 
and intercepts that were allowed to vary across participants. In experi-
ments 3A, 3B and 4, parameter estimates for rounds completed in 
either the before or after conditions were fitted separately. The joint 
posterior was approximated using No-U-Turn Sampling as imple-
mented in Stan70. Four chains with 2,000 samples (1,000 discarded 
as burn-in) were run for a total of 4,000 posterior samples per model. 
Chain convergence was determined by ensuring that the Gelman–
Rubin statistic R was close to 1. Default weakly informative priors 
implemented in the brms package were used for each regression 
model71. For all models, fixed effects are reported in the text as the 
mean of each parameter’s marginal posterior distribution alongside 
95% HDIs. In figures, 95%, 80% and 50% HDIs are shown, each indicating 
the range that contains the corresponding percentage of the posterior 
density. Parameter values outside of these ranges are unlikely given 
the model, data and priors.

Response time analysis. To examine how the number of recalled 
memories impacted the amount of time it took participants to make 
their choices in all experiments, we used a linear mixed-effects model 
to predict trial-wise response times. Response times were modelled 
using a shifted lognormal distribution, which accounts for the positive 
skew typical of response times. We included both random intercepts 
and slopes for participants to account for individual differences in both 
baseline response speed and sensitivity to the number of memories 
recalled. The model can be written as

RTij ∼ ShiftedLogNormal(μij,σ,θ)

μij = β0 + β1nMemoriesij + u0j + u1jnMemoriesij
,

where i indexes trials and j indexes participants, and the tilde (~) indi-
cates how the outcome variable is distributed. The parameters u0j and 
u1j represent the random intercepts and slopes for each participant, σ 
is the scale parameter and θ is the shift parameter of the distribution. 
The number of memories participants recalled in each round (nMemo-
riesij) was included as a continuous predictor. We further conducted 
a separate analysis of the number of offer-relevant memories that 
participants recalled in each round, which consisted of an identical 
model but with this predictor instead.

In experiment 5, the mixed-effects model of the total number of 
memories recalled by participants included only a random intercept 
because this measure did not vary within participants. We also assessed 
how individual differences in task performance related to the impact 
of recalled memories on response times in two ways. First, using the 
same mixed-effects modelling framework, we modelled the relation-
ship between the number of offer-irrelevant memories participants 
had and their performance as

μij = β0 + β1nIrrelMemoriesij + β2Accuracyj + β3nIrrelMemoriesij
×Accuracyj + u0j + u1jnIrrelMemoriesij,

where Accuracyj is each participant’s average choice accuracy. Second, 
we determined whether the total number of memories or the number 
of offer-relevant memories better predicted response times as a func-
tion of performance. Specifically, we split participants into two groups 
based on the median task performance, refit the original mixed-effects 
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models to each group and then assessed model fit by separating the 
data into ten folds and cross-validating, as described in detail in our 
decision analyses.

Decision analysis. To analyse the extent to which decision-relevant 
variables influence participants choices in all experiments, we fitted 
two mixed-effects logistic regression models. Binary choices (1 = offer 
taken, 0 = offer rejected) were predicted by either an offer’s true value 
or its recalled value. The true value of an offer (TrueValueij) was just the 
sum of all offer-relevant items that were shown to the participants. By 
contrast, we computed the recalled offer value (RecalledValueij) as the 
sum over the reward that was remembered for each offer-relevant item 
that was also recalled during the free recall phase. These predictors 
were z-scored before model fitting to facilitate comparison between 
them. Each model included random intercepts and slopes to account 
for individual differences in both baseline offer acceptance rates and 
value sensitivity. These models can be written as

Choiceij ∼ Bernoulli(pij)

logit(pij) = β0 + β1TrueValueij + u0j + u1jTrueValueij
logit(pij) = β0 + β1RecalledValueij + u0j + u1jRecalledValueij

.

To determine the extent to which either recalled offer value or true offer 
value best predicted choices, we compared model fit using either pre-
dictor. Specifically, model fit was assessed by separating the data into 
ten folds and cross-validating. The ELPD was then computed by sum-
ming the log likelihood for each held out datapoint and then used as a 
measure of out-of-sample predictive fit for each model, where higher 
ELPD values suggest better model fit, as they indicate a higher likeli-
hood of accurately predicting new data. To compare models, we then 
subtracted the pointwise ELPD estimates and calculated the standard 
error of this difference to quantify uncertainty of the comparison72,73.

Lastly, we assessed overall task performance using a separate 
mixed-effects logistic regression model. The model included only 
fixed and random intercepts to assess whether accuracy (1 = correct, 
0 = incorrect) was from different from chance-level performance (0.5). 
The model was simply

Correctij ∼ Bernoulli(pij)

logit(pij) = β0 + u0j
.

Surprise round analysis. In experiment 4, we also assessed perfor-
mance on the final ‘surprise’ round where participants were required 
to make decisions about the offers that they expected (in the before 
condition) as well as for offers that were unexpected (in both condi-
tions). To do so, we calculated a ΔPerformance score for each partici-
pant, which consisted of taking their difference in accuracy on the final 
round relative to their average accuracy on previous rounds (previous 
round accuracy − last round accuracy). We calculated this score sepa-
rately for expected and unexpected offers in each condition and then 
used ΔPerformance as the outcome variable in separate simple linear 
regression models:

ΔPerformancej ∼ Normal(μ,σ)

μ = β0
.

Memory analysis. We assessed performance on each part of the mem-
ory phase of experiments 1–4 using two complementary models. First, 
we examined participants’ overall recall rates, which we defined as 
the proportion of items they accurately recalled relative to all of the 
items they were shown. We compared these recall rates with chance 
performance, which we defined as the probability of correctly guess-
ing items when randomly selecting 6 items from the pool of 16 possible 

items that could be shown on a given round, which was 37.5% (or 6/16). 
For each participant, we computed the difference between their mean 
recall rate and chance (Recallj) and then fitted a simple linear regression 
model to these difference scores:

Recallj ∼ Normal(β0,σ)

Next, to assess the accuracy of participants’ memory for the reward 
associated with successfully recalled items, we fitted a mixed-effects 
linear regression model predicting participants’ remembered rewards 
from the true associated rewards. Both remembered (Remembere-
dRewardij) and true (TrueRewardij) rewards were normalized by divid-
ing by the maximum absolute value in the dataset. The model included 
random intercepts and slopes for participants to account for individual 
differences in both baseline memory and value sensitivity:

RememberedRewardij ∼ Normal(μij,σ)

μij = β0 + β1TrueRewardij + u0j + u1jTrueRewardij
.

Because experiment 5 assessed participants’ memory for associated 
reward using a two-alternative forced choice task, we fitted a simple 
mixed-effects model to determine the extent to which their responses 
differed from chance. This model was identical to the model used to 
assess overall task performance.

Replication analysis for experiments 1–4. To assess the extent to 
which our effects replicated and/or differed across experiments sharing 
similar designs, we also ran our primary analyses with an identifier for 
each sample included as a fixed interaction effect. Data were pooled 
across comparable experiments (experiments 1 and 2; experiments 3 
and 4), and we used sum-to-zero (effect) coding for the experiment 
factor. This approach allows each experiment’s coefficient to represent 
its deviation from the pooled mean across all experiments, rather than 
a comparison with an arbitrary reference experiment. We performed 
these pooled analyses for both the response time and decision models. 
In experiments 3 and 4, we additionally assessed interaction effects of 
condition on decision response times in a single mixed-effects model 
and assessed the difference in ELPD differences between conditions 
from pooled choice models. The results of these analyses are reported 
in Supplementary Tables 4 and 5.

Controlling for individual differences in effort. Across all experi-
ments, we also assessed possible contributions of individual differ-
ences in effort to the relationship between the number of recalled 
memories and response times in three ways. First, we looked for evi-
dence of a speed–accuracy trade-off during the decision phase of each 
experiment by fitting mixed-effects models predicting choice accuracy 
from response times:

Correctij ∼ Bernoulli(pij)

logit(pij) = β0 + RTij + u0j + u1jRTij
.

Second, we included z-scored performance on the two-back distractor 
task as a fixed-effect covariate in the response time models. Third, to 
distinguish between-participant and within-participant effects of the 
number of memories presented on response times, we decomposed 
this predictor into two orthogonal components: a between-participant 
component representing each participant’s average number of memo-
ries recalled, and a within-participant component representing the 
deviation from each participant’s personal average. The results of these 
analyses are reported in Supplementary Tables 6–9.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
The data are available via GitHub at https://github.com/jonathanicholas/ 
nm2025_emdm.

Code availability
The code is available via GitHub at https://github.com/jonathanicholas/
nm2025_emdm.
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