papers

An up-to-date list is available on Google Scholar.

preprints

2024

  1. Two routes to value-based decisions in Parkinsons disease: differentiating incremental reinforcement learning from episodic memory
    L Montaser-Kouhsari*, J Nicholas*, RT Gerraty, and D Shohamy
    (* denotes equal contribution), bioRxiv, 2024

2023

  1. Proactive and reactive construction of memory-based preferences
    J Nicholas, ND Daw, and D Shohamy
    bioRxiv, 2023

journal articles

2023

  1. The role of the cerebellum in learning to predict reward: evidence from cerebellar ataxia
    J Nicholas, C Amlang, CR Lin, L Montaser-Kouhsari, N Desai, M Pan, S Kuo, and D Shohamy
    The Cerebellum, 2023
  2. Insights into the accuracy of social scientists’ forecasts of societal change
    The Forecasting Collaborative
    Nature Human Behaviour, 2023

2022

  1. Uncertainty alters the balance between incremental learning and episodic memory
    J Nicholas, ND Daw, and D Shohamy
    eLife, 2022

2021

  1. Linear and nonlinear profiles of weak behavioral and neural differentiation between numerical operations in children with math learning difficulties
    L Chen, T Iuculano, P Mistry, J Nicholas, Y Zhang, and V Menon
    Neuropsychologia, 2021

2020

  1. Neural correlates of cognitive variability in childhood autism and relation to heterogeneity in decision-making dynamics
    T Iuculano, A Padmanabhan, L Chen, J Nicholas, S Mitsven, C Angeles, and V Menon
    Developmental Cognitive Neuroscience, 2020

2018

  1. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition
    J Taghia, W Cai, S Ryali, J Kochalka, J Nicholas, T Chen, and V Menon
    Nature communications, 2018
  2. Is Spatial Context Privileged in the Neural Representation of Events?
    HR Dimsdale-Zucker*, and J Nicholas*
    (* denotes equal contribution), Journal of Neuroscience, 2018

2016

  1. Temporal dynamics and developmental maturation of salience, default and central-executive network interactions revealed by variational Bayes hidden Markov modeling
    S Ryali, K Supekar, T Chen, J Kochalka, W Cai, J Nicholas, A Padmanabhan, and V Menon
    PLoS computational biology, 2016